Skip to main content
×
×
Home

TOWARDS DIFFERENTIAL CALCULUS IN STRATIFIED GROUPS

  • VALENTINO MAGNANI (a1)
Abstract

We study graded group-valued continuously differentiable mappings defined on stratified groups, where differentiability is understood with respect to the group structure. We characterize these mappings by a system of nonlinear first-order PDEs, establishing a quantitative estimate for their difference quotient. This provides us with a mean value estimate that allows us to prove both the inverse mapping theorem and the implicit function theorem. The latter theorem also relies on the fact that the differential admits a proper factorization of the domain into a suitable inner semidirect product. When this splitting property of the differential holds in the target group, then the inverse mapping theorem leads us to the rank theorem. Both implicit function theorem and rank theorem naturally introduce the classes of image sets and level sets. For commutative groups, these two classes of sets coincide and correspond to the usual submanifolds. In noncommutative groups, we have two distinct classes of intrinsic submanifolds. They constitute the so-called intrinsic graphs, that are defined with respect to the algebraic splitting and everywhere possess a unique metric tangent cone equipped with a natural group structure.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      TOWARDS DIFFERENTIAL CALCULUS IN STRATIFIED GROUPS
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      TOWARDS DIFFERENTIAL CALCULUS IN STRATIFIED GROUPS
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      TOWARDS DIFFERENTIAL CALCULUS IN STRATIFIED GROUPS
      Available formats
      ×
Copyright
References
Hide All
Ambrosio, L. and Tilli, P., Selected Topics on Analysis in Metric Spaces (Oxford University Press, 2003).
Capogna, L. and Cowling, M., ‘Conformality and Q-Harmonicity in Carnot groups’, Duke Math. J. 135 (3) (2006), 455479.
Federer, H., Geometric Measure Theory (Springer, 1969).
Folland, G. B. and Stein, E. M., Hardy Spaces on Homogeneous Groups (Princeton University Press, 1982).
Franchi, B., Serapioni, R. and Serra Cassano, F., ‘Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups’, Comm. Anal. Geom. 11 (5) (2003), 909944.
Franchi, B., Serapioni, R. and Serra Cassano, F., ‘On the structure of finite perimeter sets in step 2 Carnot groups’, J. Geom. Anal. 13 (3) (2003), 421466.
Franchi, B., Serapioni, R. and Serra Cassano, F., ‘Regular submanifolds, graphs and area formula in Heisenberg groups’, Adv. Math. 211 (1) (2007), 152203.
Gromov, M., ‘Carnot–Carathéodory spaces seen from within’, in: Subriemannian Geometry, Progress in Mathematics, 144 (eds. Bellaiche, A. and Risler, J.) (Birkhäuser, Basel, 1996).
Hajlasz, P. and Koskela, P., ‘Sobolev met Poincaré’, Mem. Amer. Math. Soc. 145 (2000).
Hebisch, W. and Sikora, A., ‘A smooth subadditive homogeneous norm on a homogeneous group’, Studia Math. 96 (3) (1990), 231236.
Herstein, I. N., Algebra, Editori riuniti (1994), translation from Topics in Algebra.
Kaplan, A., ‘Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms’, Trans. Amer. Math. Soc. 258 (1) (1980), 147153.
Kirchheim, B. and Serra Cassano, F., ‘Rectifiability and parametrization of intrinsic regular surfaces in the Heisenberg group’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (4) (2004), 871896.
LLoyd, N. G., Degree Theory (Cambridge University Press, 1978).
Magnani, V., ‘Differentiability and area formula on stratified Lie groups’, Houston J. Math. 27 (2) (2001), 297323.
Magnani, V., ‘Elements of geometric measure theory on sub-Riemannian groups’, PhD Theses series of Scuola Normale Superiore, 2002.
Magnani, V., ‘On a general coarea inequality and applications’, Ann. Acad. Sci. Fenn. Math. 27 (2002), 121140.
Magnani, V., ‘The coarea formula for real-valued Lipschitz maps on stratified groups’, Math. Nachr. 278 (14) (2005), 117.
Magnani, V., ‘Characteristic points, rectifiability and perimeter measure on stratified groups’, J. Eur. Math. Soc. 8 (4) (2006), 585609.
Magnani, V., ‘Pansu differentiability and intrinsic submanifolds in stratified groups’, 2007, arXiv:math/0701322v1.
Magnani, V., ‘Contact equations, Lipschitz extensions and isoperimetric inequalities’, Calc. Var. Partial Differential Equations 39 (1–2) (2010), 233271.
McDuff, D. and Salamon, D., Introduction to Symplectic Topology (Oxford University Press, 1995).
Pansu, P., ‘Croissance des boules et des géodésiques fermeés dans les nilvariété’, Ergod. Theory Dynam. Sys. 3 (1983), 415445.
Pansu, P., ‘Métriques de Carnot–Carathéodory quasiisométries des espaces symétriques de rang un’, Ann. Math. 129 (1989), 160.
Reimann, H. M. and Ricci, F., ‘The complexified Heisenberg group’, in: Proceedings on Analysis and Geometry (in Russian) (Novosibirsk Akademgorodok, 1999) (Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat, Novosibirsk, 2000), 465480.
Schwartz, J. T., ‘Nonlinear functional analysis’, in: Courant Institute of Mathematical Sciences (New York University, 1965).
Stein, E. M., Harmonic Analysis (Princeton University Press, 1993).
Varadarajan, V. S., Lie groups, Lie Algebras and their Representation (Springer, New York, 1984).
Warhurst, B., ‘Contact and Pansu differentiable maps on Carnot groups’, Bull. Aust. Math. Soc. 77 (3) (2008), 495507.
Warner, F. W., Foundations of Differentiable Manifolds and Lie Groups (Foresman and Company, London, 1971).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed