Skip to main content Accessibility help


  • Jasmin Matz (a1) and Werner Müller (a2)


In [31] we defined a regularized analytic torsion for quotients of the symmetric space $\operatorname{SL}(n,\mathbb{R})/\operatorname{SO}(n)$ by arithmetic lattices. In this paper we study the limiting behavior of the analytic torsion as the lattices run through sequences of congruence subgroups of a fixed arithmetic subgroup. Our main result states that for principal congruence subgroups and strongly acyclic flat bundles, the logarithm of the analytic torsion, divided by the index of the subgroup, converges to the $L^{2}$ -analytic torsion.



Hide All
1.Arthur, J., A trace formula for reductive groups. I. Terms associated to classes in G (ℚ), Duke Math. J. 45(4) (1978), 911952.
2.Arthur, J., Automorphic representations and number theory, in 1980 Seminar on Harmonic Analysis, Canadian Math. Soc., Conference Proceedings, Volume 1 (AMS, Providence, RI, 1981).
3.Arthur, J., The trace formula in invariant form, Ann. of Math. (2) 114(1) (1981), 174.
4.Arthur, J., On a family of distributions obtained from Eisenstein series. I. Application of the Paley-Wiener theorem, Amer. J. Math. 104(6) (1982), 12431288.
5.Arthur, J., On a family of distributions obtained from Eisenstein series. II. Explicit formulas, Amer. J. Math. 104(6) (1982), 12891336.
6.Arthur, J., A measure on the unipotent variety, Canad. J. Math. 37(6) (1985), 12371274.
7.Arthur, J., The local behavior of weighted orbital integrals, Duke Math. J. 56(2) (1988), 223293.
8.Arthur, J., An introduction to the trace formula, Clay Math. Proc. 4 (2005), 1263.
9.Ash, A., Gunnells, P., McConnell, M. and Yasaki, D., On the growth of torsion in the cohomology of arithmetic groups, Preprint, 2016, arXiv:1608.05858.
10.Barbasch, D. and Moscovici, H., L 2 -index and the trace formula, J. Funct. Anal. 53 (1983), 151201.
11.Bergeron, N., Sengün, M. and Venkatesh, A., Torsion homology growth and cycle complexity of arithmetic manifolds, Duke Math. J. 165(9) (2016), 16291693.
12.Bergeron, N. and Venkatesh, A., The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu 12(2) (2013), 391447.
13.Borel, A. and Garland, H., Laplacian and the discrete spectrum of an arithmetic group, Amer. J. Math. 105(2) (1983), 309335.
14.Borel, A. and Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, Mathematical Surveys and Monographs, Second edition, Volume 67 (Amer. Math. Soc., Providence, RI, 2000).
15.Bridson, M. and Haefliger, A., Metric space of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, Volume 319 (Springer, Berlin, 1999).
16.Clozel, L. and Delorme, P., Le théorème de Paley–Wiener invariant pour les groupes de Lie réductifs, Invent. Math. 77(3) (1984), 427453.
17.Collingwood, D. H. and McGovern, W. M., Nilpotent Orbits in Semisimple Lie Algebra (CRC Press, 1993).
18.Donnelly, H., Stability theorems for the continuous spectrum of a negatively curved manifold, Trans. Amer. Math. Soc. 264(2) (1981), 431448.
19.Finis, T. and Lapid, E., On the continuity of the geometric side of the trace formula, Acta Math. Vietnam. 41(3) (2016), 425455.
20.Finis, T., Lapid, E. and Müller, W., On the spectral side of Arthur’s trace formula—absolute convergence, Ann. of Math. (2) 174(1) (2011), 173195.
21.Finis, T., Lapid, E. and Müller, W., Limit multiplicities for principal congruence subgroups of GL(n) and SL(n), J. Inst. Math. Jussieu 14(3) (2015), 589638.
22.Gradshteyn, I. S. and Ryzhik, M. I., Table of Integrals, Series, and Products (Elsevier, Amsterdam, 2007).
23.Helgason, S., Groups and geometric analysis, in Integral Geometry, Invariant Differential Operators, and Spherical Functions, Pure and Applied Mathematics, Volume 113 (Academic Press, Inc., Orlando, FL, 1984).
24.Knapp, A. W., Representation Theory of Semisimple Groups (Princeton University Press, Princeton and Oxford, 2001).
25.Lapid, E. and Müller, W., Spectral asymptotics for arithmetic quotients of SL(n, ℝ)/SO(n), Duke Math. J. 149(1) (2009), 117155.
26.Lott, J., Heat kernels on covering spaces and topological invariants, J. Differential Geom. 35(2) (1992), 471510.
27.Mathai, V., L 2 -analytic torsion, J. Funct. Anal. 107(2) (1992), 369386.
28.Matsushima, Y. and Murakami, S., On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. (2) 78 (1963), 365416.
29.Matz, J., Bounds for global coefficients in the fine geometric expansion of Arthur’s trace formula for GL(n), Israel J. Math. 205(1) (2015), 337396.
30.Matz, J., Weyl’s law for Hecke operators on GL(n) over imaginary quadratic number fields, Amer. J. Math. 139(1) (2017), 57145.
31.Matz, J. and Müller, W., Analytic torsion of arithmetic quotients of the symmetric space SL(n, ℝ)/SO(n), Geom. Funct. Anal. 27(6) (2017), 13781449.
32.Miatello, R. J., The Minakshisundaram–Pleijel coefficients for the vector-valued heat kernel on compact locally symmetric spaces of negative curvature, Trans. Amer. Math. Soc. 260(1) (1980), 133.
33.Müller, W., Weyl’s law for the cuspidal spectrum of SLn, Ann. of Math. (2) 165 (2007), 275333.
34.Müller, W., On the spectral side of the Arthur trace formula, Geom. Funct. Anal. 12(4) (2002), 669722.
35.Müller, W. and Pfaff, J., Analytic torsion and L 2 -torsion of compact locally symmetric manifolds, J. Differential Geom. 95(1) (2013), 71119.
36.Müller, W. and Speh, B., Absolute convergence of the spectral side of the Arthur trace formula for GL(n), Geom. Funct. Anal. 14(1) (2004), 5893.
37.Raimbault, J., Asymptotics of analytic torsion for hyperbolic three–manifolds, Preprint, 2012, arXiv:1212.3161.
38.Raimbault, J., Analytic, Reidemeister and homological torsion for congruence three–manifolds, Preprint, 2013, arXiv:1307.2845.
39.Ray, D. B. and Singer, I. M., R-torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971), 145210.
40.Renard, D., Reprśentations des groupes réductifs p-adiques, Cours Spécialisés, Volume 17 (Société Mathématique de France, Paris, 2010).
41.Shahidi, F., On certain L-functions, Amer. J. Math. 103(2) (1981), 297355.
42.Shahidi, F., On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math. (2) 127(3) (1988), 547584.
43.Shubin, M. A., Pseudodifferential Operators and Spectral Theory, Second edition (Springer, Berlin, 2001).
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


  • Jasmin Matz (a1) and Werner Müller (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed