Skip to main content


  • Amalendu Krishna (a1) and Husney Parvez Sarwar (a1)

We show that for any commutative Noetherian regular ring $R$ containing $\mathbb{Q}$ , the map $K_{1}(R)\rightarrow K_{1}\left(\frac{R[x_{1},\ldots ,x_{4}]}{(x_{1}x_{2}-x_{3}x_{4})}\right)$ is an isomorphism. This answers a question of Gubeladze. We also compute the higher $K$ -theory of this monoid algebra. In particular, we show that the above isomorphism does not extend to all higher $K$ -groups. We give applications to a question of Lindel on the Serre dimension of monoid algebras.

Hide All
1. Anderson D. F., Projective modules over subrings of k[X, Y] generated by monomials, Pacific J. Math. 79 (1978), 517.
2. Artin M. and Mazur B., Etale Homotopy, Lecture Notes in Mathematics, Volume 100, xiv+461 pp. (Springer, Berlin–New York, 1969).
3. Bass H., Algebraic K-Theory (W. A. Benjamin, Inc., New York-Amsterdam, 1968).
4. Bruns W. and Gubeladze J., Polytopes, Rings, and K-Theory, Springer Monographs in Mathematics, xiv+461 pp. (Springer, Dordrecht, 2009).
5. Cortiñas G., Haesemeyer C., Walker M. and Weibel C., K-theory of cones of smooth varieties, J. Algebraic Geom. 22 (2013), 1334.
6. Cortiñas G., Haesemeyer C. and Weibel C., K-regularity, cdh-fibrant Hochschild homology, and a conjecture of Vorst, J. Amer. Math. Soc. 21(2) (2008), 547561.
7. Dhorajia A. and Keshari M., A note on cancellation of projective modules, J. Pure Appl. Algebra 216 (2012), 126129.
8. Gracía-Sanchéz P. A. and Rosales J. C., Finitely Generated Commutative Monoids (Nova Sc. Publishers Inc., Commack, New York, 1999).
9. Gubeladze J., Anderson’s conjecture and the maximal class of monoid over which projective modules are free, Math. USSR-Sb. 63 (1988), 165188.
10. Gubeladze J., Classical Algebraic K-Theory of Monoid Algebras, Lecture Notes in Mathematics, Volume 1437, pp. 3694 (Springer, Berlin, 1990).
11. Gubeladze J., Geometric and algebraic representations of commutative cancellative monoids, Proc. A. Razmadze Math. Inst. 113 (1995), 3181.
12. Gubeladze J., Nontriviality of SK 1(R[M]), J. Pure Appl. Algebra 104 (1995), 169190.
13. Gubeladze J., K-theory of affine toric varieties, Homology, Homotopy Appl. 1 (1999), 135145.
14. Hartshorne R., Algebraic Geometry, Graduate Text in Mathematics, Volume 52 (Springer, New York, 1997).
15. Kang M., Projective modules over some polynomial rings, J. Algebra 59 (1979), 6576.
16. Kemf G. R., Some elementary proofs of basic theorems in the cohomology of quasi-coherent sheaves, Rocky Mountain J. Math. 10(3) (1980), 637646.
17. Keshari M. and Sarwar H. P., Serre dimension of monoid algebras, Proc. Math. Sci. Indian Acad. Sci. 127(2) (2017), 269280.
18. Krishna A., Zero cycles on a threefold with isolated singularities, J. Reine Angew. Math. 594 (2006), 93115.
19. Krishna A., An Artin–Rees theorem in K-theory and applications to zero cycles, J. Algebraic Geom. 19 (2010), 555598.
20. Krishna A. and Morrow M., Analogues of Gersten’s conjecture for singular schemes, Selecta Math. (N.S.) 23 (2017), 12351247.
21. Krull W., Dimensionstheorie in Stellenringen, J. Reine Angew. Math. 179 (1938), 204226.
22. Lindel H., Unimodular elements in projective modules, J. Algebra 172(2) (1995), 301319.
23. Liu Q., Algebraic Geometry and Arithmetic Curves, Oxford Graduate Text in Mathematics, Volume 6 (Oxford Science Publications, Oxford, 2002).
24. Loday J.-L., Cyclic Homology, Grundlehern der Mathematischen Wissenschaften, Volume 301 (Springer, Berlin, 1992).
25. Matsumura H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, Volume 8 (Cambridge university press, Cambridge, 1997).
26. Morrow M., Pro unitality and pro excision in algebraic K-theory and cyclic homology, J. Reine Angew. Math. (2015), to appear,
27. Morrow M., Pro cdh-descent for cyclic homology and K-theory, J. Inst. Math. Jussieu 15(3) (2016), 539567.
28. Quillen D., Higher algebraic K-theory I, Lect. Notes Math. 341 (1973), 85147.
29. Roy A., Application of patching diagrams to some questions about projective modules, J. Pure Appl. Algebra 24(3) (1982), 313319.
30. Srinivas V., K 1 of the cone over a curve, J. Reine Angew. Math. 381 (1987), 3750.
31. Swan R. G., Gubeladze’s proof of Anderson’s conjecture, Contemp. Math 124 (1992), 215250.
32. Thomason R. W. and Trobaugh T., Higher Algebraic K-Theory Of Schemes And Of Derived Categories, The Grothendieck Festschrift III, Progress in Mathematics, Volume 88, pp. 247435 (Birkhäuser, Boston, MA, 1990).
33. Vorst T., Localization of the K-theory of polynomial extensions. With an appendix by Wilberd van der Kallen, Math. Ann. 244(1) (1979), 3353.
34. Weibel C. A., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Volume 38 (Cambridge University Press, Cambridge, 1994).
35. Weibel C. A., Cyclic homology of Schemes, Proc. Amer. Math. Soc. 124 (1996), 16551662.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 81 *
Loading metrics...

* Views captured on Cambridge Core between 10th August 2017 - 17th March 2018. This data will be updated every 24 hours.