Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 16
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Breuil, Christophe Hellmann, Eugen and Schraen, Benjamin 2016. Une interprétation modulaire de la variété trianguline. Mathematische Annalen,

    Hellmann, Eugen and Schraen, Benjamin 2016. Density of potentially crystalline representations of fixed weight. Compositio Mathematica, p. 1.

    Sorensen, Claus M. 2016. The local Langlands correspondence in families and Ihara's lemma for U(n). Journal of Number Theory, Vol. 164, p. 127.

    Thorne, Jack A. 2016. Automorphy of some residually dihedral Galois representations. Mathematische Annalen, Vol. 364, Issue. 1-2, p. 589.

    Clozel, Laurent and Thorne, Jack 2015. Level raising and symmetric power functoriality, II. Annals of Mathematics, p. 303.

    Dieulefait, Luis 2015. Automorphy of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="" xmlns:xs="" xmlns:xsi="" xmlns="" xmlns:ja="" xmlns:mml="" xmlns:tb="" xmlns:sb="" xmlns:ce="" xmlns:xlink="" xmlns:cals="" xmlns:sa=""><mml:msup><mml:mrow><mml:mi mathvariant="normal">Symm</mml:mi></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="normal">GL</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math> and base change. Journal de Mathématiques Pures et Appliquées, Vol. 104, Issue. 4, p. 619.

    Emerton, Matthew Gee, Toby and Savitt, David 2015. Lattices in the cohomology of Shimura curves. Inventiones mathematicae, Vol. 200, Issue. 1, p. 1.

    Guralnick, Robert Herzig, Florian and Tiep, Pham Huu 2015. Adequate groups of low degree. Algebra & Number Theory, Vol. 9, Issue. 1, p. 77.

    Tiep, Pham Huu 2015. Subgroup Structure and Representations of Finite and Algebraic Groups. Vietnam Journal of Mathematics, Vol. 43, Issue. 3, p. 501.

    Allen, Patrick and Calegari, Frank 2014. Finiteness of unramified deformation rings. Algebra & Number Theory, Vol. 8, Issue. 9, p. 2263.

    Barnet-Lamb, Thomas Gee, Toby Geraghty, David and Taylor, Richard 2014. Potential automorphy and change of weight. Annals of Mathematics, Vol. 179, Issue. 2, p. 501.

    Clozel, Laurent and Thorne, Jack A. 2014. Level-raising and symmetric power functoriality, I. Compositio Mathematica, Vol. 150, Issue. 05, p. 729.


    Goldstein, Daniel and Guralnick, Robert 2014. Cosets of Sylow p-subgroups and a question of Richard Taylor. Journal of Algebra, Vol. 398, p. 569.

    Tiep, Pham Huu 2014. Representation of finite groups: conjectures, reductions, and applications. Acta Mathematica Vietnamica, Vol. 39, Issue. 1, p. 87.

    Gee, Toby and Kassaei, Payman 2013. Companion forms in parallel weight one. Compositio Mathematica, Vol. 149, Issue. 06, p. 903.

  • Journal of the Institute of Mathematics of Jussieu, Volume 11, Issue 4
  • October 2012, pp. 855-920

On the automorphy of l-adic Galois representations with small residual image With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Jack Thorne

  • Jack Thorne (a1)
  • DOI:
  • Published online: 05 April 2012

We prove new automorphy lifting theorems for essentially conjugate self-dual Galois representations into GLn. Existing theorems require that the residual representation have ‘big’ image, in a certain technical sense. Our theorems are based on a strengthening of the Taylor–Wiles method which allows one to weaken this hypothesis.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.T. Barnet-Lamb , T. Gee and D. Geraghty , The Sato–Tate conjecture for Hilbert modular forms, J. Am. Math. Soc. 24 (2011), 411469.

10.L. Clozel , M. Harris and R. Taylor , Automorphy for some l-adic lifts of automorphic mod l Galois representations (with Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by M.-F. Vignéras, Publ. Math. IHES 108 (2008), 1181.

12.T. Gee , Automorphic lifts of prescribed types, Math. Annalen 350(1) (2011), 107144.

16.B. H. Gross , Algebraic modular forms, Israel J. Math. 113 (1999), 6193.

18.R. M. Guralnick , Small representations are completely reducible, J. Alg. 220(2) (1999), 531541.

22.M. Kisin , Potentially semi-stable deformation rings, J. Am. Math. Soc. 21(2) (2008), 513546.

23.G. Kuperberg , Denseness and Zariski denseness of Jones braid representations, Geom. Topol. 15 (2011), 1139.

25.J. M. Lansky , Parahoric fixed spaces in unramified principal series representations, Pac. J. Math. 204(2) (2002), 433443.

26.M. Larsen and R. Pink , Finite subgroups of algebraic groups, J. Am. Math. Soc. 24(4) (2011), 11051158.

27.W. Magnus , On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7 (1954), 649673.

33.J.-P. Serre , Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math. 116 (1994), 513530. (13)

34.J. A. Shalika , The multiplicity one theorem for GLn, Annals Math. 100 (1974), 171193.

35.S. W. Shin , Galois representations arising from some compact Shimura varieties, Annals Math. 173 (2011), 16451741.

36.T. A. Springer , Twisted conjugacy in simply connected groups, Transform. Groups 11(3) (2006), 539545.

38.R. Steinberg , Automorphisms of classical Lie algebras, Pac. J. Math. 11 (1961), 11191129.

41.R. Taylor , Automorphy for some l-adic lifts of automorphic mod l Galois representations, II, Publ. Math. IHES 108 (2008), 183239.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *