Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 14
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Kozioł, Karol 2016. Pro-p-Iwahori Invariants for SL2andL-Packets of Hecke Modules. International Mathematics Research Notices, Vol. 2016, Issue. 4, p. 1090.

    Chojecki, Przemysław 2015. On non-abelian Lubin–Tate theory for . Compositio Mathematica, Vol. 151, Issue. 08, p. 1433.

    Ganguli, Abhik and Ghate, Eknath 2015. Reductions of Galois representations via the mod p Local Langlands Correspondence. Journal of Number Theory, Vol. 147, p. 250.

    Tokimoto, Kazuki 2015. On the reduction modulo p of representations of a quaternion division algebra over a p-adic field. Journal of Number Theory, Vol. 150, p. 136.

    De Ieso, Marco 2013. Espaces de fonctions de classe sur. Indagationes Mathematicae, Vol. 24, Issue. 3, p. 530.

    De Ieso, Marco 2013. Existence de normes invariantes pour. Journal of Number Theory, Vol. 133, Issue. 8, p. 2729.

    Paškūnas, Vytautas 2013. The image of Colmez’s Montreal functor. Publications mathématiques de l'IHÉS, Vol. 118, Issue. 1, p. 1.

    Vienney, Mathieu 2012. Représentations modulo p dʼun sous-groupe de Borel de. Comptes Rendus Mathematique, Vol. 350, Issue. 13-14, p. 651.

    Herzig, Florian 2011. The classification of irreducible admissible mod p representations of a p-adic GL n. Inventiones mathematicae, Vol. 186, Issue. 2, p. 373.

    Morra, Stefano 2011. Explicit description of irreducible <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="" xmlns:xs="" xmlns:xsi="" xmlns="" xmlns:ja="" xmlns:mml="" xmlns:tb="" xmlns:sb="" xmlns:ce="" xmlns:xlink="" xmlns:cals=""><mml:msub><mml:mi mathvariant="normal">GL</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi mathvariant="bold">Q</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:math>-representations over <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="" xmlns:xs="" xmlns:xsi="" xmlns="" xmlns:ja="" xmlns:mml="" xmlns:tb="" xmlns:sb="" xmlns:ce="" xmlns:xlink="" xmlns:cals=""><mml:msub><mml:mover accent="true"><mml:mi mathvariant="bold">F</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mi>p</mml:mi></mml:msub></mml:math>. Journal of Algebra, Vol. 339, Issue. 1, p. 252.

    Berger, Laurent 2010. On some modular representations of the Borel subgroup of GL2(Q p). Compositio Mathematica, Vol. 146, Issue. 01, p. 58.

    Paškūnas, Vytautas 2009. On some crystalline representations of GL2(ℚp). Algebra & Number Theory, Vol. 3, Issue. 4, p. 411.

    Breuil, Christophe and Schneider, Peter 2007. First steps towards p-adic Langlands functoriality. Journal für die reine und angewandte Mathematik (Crelles Journal), Vol. 2007, Issue. 610,

    Buzzard, Kevin and Calegari, Frank 2004. A counterexample to the Gouvêa–Mazur conjecture. Comptes Rendus Mathematique, Vol. 338, Issue. 10, p. 751.

  • Journal of the Institute of Mathematics of Jussieu, Volume 2, Issue 1
  • January 2003, pp. 23-58


  • Christophe Breuil (a1)
  • DOI:
  • Published online: 01 January 2003

Nous conjecturons que la réduction modulo $p$ des représentations cristallines irréductibles de dimension 2 sur $\bar{\bm{Q}}_p$ de $\Gal(\bar{\bm{Q}}_p/\bm{Q}_p)$ peut être prédite par la réduction modulo $p$ de représentations $p$-adiques localement algébriques de $\GL_2(\bm{Q}_p)$. Nous explicitons quelques calculs de telles réductions confirmant cette conjecture. Cela suggère un lien arithmétique non trivial entre les deux types de représentations.

AMS 2000 Mathematics subject classification: Primary 11F33; 11F70; 11F80; 11F85

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Institute of Mathematics of Jussieu
  • ISSN: 1474-7480
  • EISSN: 1475-3030
  • URL: /core/journals/journal-of-the-institute-of-mathematics-of-jussieu
Please enter your name
Please enter a valid email address
Who would you like to send this to? *