Hostname: page-component-86c4fcdb79-g2clh Total loading time: 0 Render date: 2024-02-05T07:19:30.527Z Has data issue: false hasContentIssue false

Perception of Communicative and Non-communicative Motion-Defined Gestures in Parkinson’s Disease

Published online by Cambridge University Press:  08 April 2016

Abhishek Jaywant
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
Victor Wasserman
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
Maaria Kemppainen
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
Sandy Neargarder
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts Department of Psychology, Bridgewater State University, Bridgewater, Massachusetts
Alice Cronin-Golomb*
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
*
Correspondence and reprint requests to: Alice Cronin-Golomb, Boston University, Department of Psychological and Brain Sciences, 648 Beacon Street, Floor 2, Boston, MA 02215. E-mail: alicecg@bu.edu

Abstract

Objectives: Parkinson’s disease (PD) is associated with deficits in social cognition and visual perception, but little is known about how the disease affects perception of socially complex biological motion, specifically motion-defined communicative and non-communicative gestures. We predicted that individuals with PD would perform more poorly than normal control (NC) participants in discriminating between communicative and non-communicative gestures, and in describing communicative gestures. We related the results to the participants’ gender, as there are gender differences in social cognition in PD. Methods: The study included 23 individuals with PD (10 men) and 24 NC participants (10 men) matched for age and education level. Participants viewed point-light human figures that conveyed communicative and non-communicative gestures and were asked to describe each gesture while discriminating between the two gesture types. Results: PD as a group were less accurate than NC in describing non-communicative but not communicative gestures. Men with PD were impaired in describing and discriminating between communicative as well as non-communicative gestures. Conclusions: The present study demonstrated PD-related impairments in perceiving and inferring the meaning of biological motion gestures. Men with PD may have particular difficulty in understanding the communicative gestures of others in interpersonal exchanges. (JINS, 2016, 22, 1–11)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, A.P., Dittrich, W.H., Gemmell, A.J., & Young, A.W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33(6), 717746. doi:10.1068/p5096 Google Scholar
Baggio, H.C., Segura, B., Ibarretxe-Bilbao, N., Valldeoriola, F., Marti, M.J., Compta, Y., & Junqué, C. (2012). Structural correlates of facial emotion recognition deficits in Parkinson’s disease patients. Neuropsychologia, 50(8), 21212128. doi:10.1016/j.neuropsychologia.2012.05.020 Google Scholar
Bidet-Ildei, C., Chauvin, A., & Coello, Y. (2010). Observing or producing a motor action improves later perception of biological motion: Evidence for a gender effect. Acta Psychologica, 134(2), 215224. doi:10.1016/j.actpsy.2010.02.002 Google Scholar
Bodden, M.E., Dodel, R., & Kalbe, E. (2010). Theory of mind in Parkinson’s disease and related basal ganglia disorders: A systematic review. Movement Disorders, 25(1), 1327. doi:10.1002/mds.22818 Google Scholar
Bodden, M.E., Mollenhauer, B., Trenkwalder, C., Cabanel, N., Eggert, K.M., Unger, M.M., & Kalbe, E. (2010). Affective and cognitive theory of mind in patients with parkinson’s disease. Parkinsonism & Related Disorders, 16(7), 466470. doi:10.1016/j.parkreldis.2010.04.014 Google Scholar
Bonivento, C., Rumiati, R.I., Biasutti, E., & Humphreys, G.W. (2013). The role of the basal ganglia in action imitation: Neuropsychological evidence from Parkinson’s disease patients. Experimental Brain Research, 224(2), 211220. doi:10.1007/s00221-012-3300-8 Google Scholar
Brainard, D.H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433436.Google Scholar
Buxton, S.L., MacDonald, L., & Tippett, L.J. (2013). Impaired recognition of prosody and subtle emotional facial expressions in Parkinson’s disease. Behavioral Neuroscience, 127(2), 193203. doi:10.1037/a0032013 Google Scholar
Calvo-Merino, B., Glaser, D.E., Grèzes, J., Passingham, R.E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15, 12431249. doi:10.1093/cercor/bhi007 Google Scholar
Clark, U.S., Neargarder, S., & Cronin-Golomb, A. (2008). Specific impairments in the recognition of emotional facial expressions in Parkinson’s disease. Neuropsychologia, 46(9), 23002309. doi:10.1016/j.neuropsychologia.2008.03.014 Google Scholar
Clark, U.S., Neargarder, S., & Cronin-Golomb, A. (2010). Visual exploration of emotional facial expressions in Parkinson’s disease. Neuropsychologia, 48(7), 19011913.Google Scholar
Clarke, T.J., Bradshaw, M.F., Field, D.T., Hampson, S.E., & Rose, D. (2005). The perception of emotion from body movement in point-light displays of interpersonal dialogue. Perception, 34(10), 11711180. doi:10.1068/p5203 Google Scholar
Dara, C., Monetta, L., & Pell, M.D. (2008). Vocal emotion processing in Parkinson’s disease: Reduced sensitivity to negative emotions. Brain Research, 1188, 100111. doi:10.1016/j.brainres.2007.10.034 Google Scholar
Dittrich, W.H. (1993). Action categories and the perception of biological motion. Perception, 22(1), 1522. doi:10.1068/p220015 Google Scholar
Freedman, M., & Stuss, D.T. (2011). Theory of Mind in Parkinson’s disease. Journal of the Neurological Sciences, 310, 225227. doi:10.1016/j.jns.2011.06.004 Google Scholar
Gilaie-Dotan, S., Kanai, R., Bahrami, B., Rees, G., & Saygin, A.P. (2013). Neuroanatomical correlates of biological motion detection. Neuropsychologia, 51(3), 457463. doi:10.1016/j.neuropsychologia.2012.11.027 Google Scholar
Gray, H.M., & Tickle-Degnen, L. (2010). A meta-analysis of performance on emotion recognition tasks in Parkinson’s disease. Neuropsychology, 24(2), 176191. doi:10.1037/a0018104 Google Scholar
Grossman, E.D., Battelli, L., & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 45(22), 28472853. doi:10.1016/j.visres.2005.05.027 Google Scholar
Grossman, E.D., Blake, R., & Kim, C.-Y. (2004). Learning to see biological motion: Brain activity parallels behavior. Journal of Cognitive Neuroscience, 16(9), 16691679. doi:10.1162/0898929042568569 Google Scholar
Hughes, A.J., Daniel, S.E., Kilford, L., & Lees, A.J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery, and Psychiatry, 55(3), 181184.Google Scholar
Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942951. doi:10.1038/nrn2024 Google Scholar
Ibarretxe-Bilbao, N., Junque, C., Tolosa, E., Marti, M.-J., Valldeoriola, F., Bargallo, N., & Zarei, M. (2009). Neuroanatomical correlates of impaired decision-making and facial emotion recognition in early Parkinson’s disease. The European Journal of Neuroscienceeuroscience, 30(6), 11621171. doi:10.1111/j.1460-9568.2009.06892.x Google Scholar
Isaacowitz, D.M., Löckenhoff, C.E., Lane, R.D., Wright, R., Sechrest, L., Riedel, R., & Costa, P.T. (2007). Age differences in recognition of emotion in lexical stimuli and facial expressions. Psychology and Aging, 22(1), 147159.Google Scholar
Jaywant, A., Shiffrar, M., Roy, S., & Cronin-Golomb, A. (2016). Impaired perception of biological motion in Parkinson’s disease. Neuropsychology, epub, PMID: 26949927.Google Scholar
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201211.Google Scholar
Kleiner, M., Brainard, D.H., & Pelli, D.G. (2007). What’s new in Psychophysics Toolbox-3? Perception, 36, ECVP Abstract Supplement.Google Scholar
Klooster, N.B., Cook, S.W., Uc, E.Y., & Duff, M.C. (2015). Gestures make memories, but what kind? Patients with impaired procedural memory display disruptions in gesture production and comprehension. Frontiers in Human Neuroscience, 8(January), 113. doi:10.3389/fnhum.2014.01054 Google Scholar
Legault, I., & Faubert, J. (2012). Perceptual-cognitive training improves biological motion perception: Evidence for transferability of training in healthy aging. Neuroreport, 23(8), 469473. doi:10.1097/WNR.0b013e328353e48a Google Scholar
Leiguarda, R.C., Pramstaller, P.P., Merello, M., Starkstein, S., Lees, A.J., & Marsden, C.D. (1997). Apraxia in Parkinson’s disease, progressive supranuclear palsy, multiple system atrophy and neuroleptic-induced parkinsonism. Brain, 120(1), 7590. doi:10.1093/brain/120.1.75 Google Scholar
Lotze, M., Heymans, U., Birbaumer, N., Veit, R., Erb, M., Flor, H., & Halsband, U. (2006). Differential cerebral activation during observation of expressive gestures and motor acts. Neuropsychologia, 44(10), 17871795. doi:10.1016/j.neuropsychologia.2006.03.016 Google Scholar
Lotze, M., Reimold, M., Heymans, U., Laihinen, A., Patt, M., & Halsband, U. (2008). Reduced ventrolateral fMRI response during observation of emotional gestures related to the degree of dopaminergic impairment in Parkinson disease. Journal of Cognitive Neuroscience, 21(7), 13211331.Google Scholar
Lubomski, M., Rushworth, R.L., Lee, W., Bertram, K.L., & Williams, D.R. (2014). Sex differences in Parkinson’s disease. Journal of Clinical Neuroscience, 21(9), 15031506. doi:10.1016/j.jocn.2013.12.016 Google Scholar
Marquardt, T.P., Levitt, S., Sherrard, K., & Cannito, M. (2014). Age and sex-related systematic bias in the identification of affective messages. Speech, Language and Hearing, 17(3), 133141. doi:10.1179/2050572813Y.0000000031 Google Scholar
Martinez-Martin, P., Gil-Nagel, A., Gracia, L.M., Gomez, J.B., Martinez-Sarries, J., Bermejo, F., & The Cooperative Multicentric Group (1994). Unified Parkinson’s Disease Rating Scale characteristics and structure. Movement Disorders, 9(1), 7683.Google Scholar
McNeill, D. (1985). So you think gestures are nonverbal? Psychological Review, 92(3), 350371. doi:10.1037/0033-295X.92.3.350 Google Scholar
McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: University of Chicago Press.Google Scholar
Miller, I.N., & Cronin-Golomb, A. (2010). Gender differences in Parkinson’s disease: Clinical characteristics and cognition. Movement Disorders, 25(16), 26952703. doi:10.1002/mds.23388 Google Scholar
Montgomery, K.J., Isenberg, N., & Haxby, J.V. (2007). Communicative hand gestures and object-directed hand movements activated the mirror neuron system. Social Cognitive and Affective Neuroscience, 2(2), 114122. doi:10.1093/scan/nsm004 Google Scholar
Pell, M.D., Monetta, L., Rothermich, K., Kotz, S.A., Cheang, H.S., & McDonald, S. (2014). Social perception in adults with Parkinson’s disease. Neuropsychology, 28(6), 905916. doi:10.1037/neu0000090 Google Scholar
Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437442.Google Scholar
Pereira, J.B., Junqué, C., Martí, M.J., Ramirez-Ruiz, B., Bargalló, N., & Tolosa, E. (2009). Neuroanatomical substrate of visuospatial and visuoperceptual impairment in Parkinson’s disease. Movement Disorders, 24(8), 11931199. doi:10.1002/mds.22560 Google Scholar
Péron, J., Le Jeune, F., Haegelen, C., Dondaine, T., Drapier, D., Sauleau, P., & Vérin, M. (2010). Subthalamic nucleus stimulation affects theory of mind network: A PET study in Parkinson’s disease. PLoS One, 5(3), e9919. doi:10.1371/journal.pone.0009919 Google Scholar
Roether, C.L., Omlor, L., Christensen, A., & Giese, M.A. (2009). Critical features for the perception of emotion from gait. Journal of Vision, 9(6), 132. doi:10.1167/9.6.15.Introduction Google Scholar
Serino, A., De Filippo, L., Casavecchia, C., Coccia, M., Shiffrar, M., & Làdavas, E. (2009). Lesions to the motor system affect action perception. Journal of Cognitive Neuroscience, 22(3), 413426.Google Scholar
Thompson, A.E., & Voyer, D. (2014). Sex differences in the ability to recognise non-verbal displays of emotion: A meta-analysis. Cognition & Emotion, 28(7), 11641195. doi:10.1080/02699931.2013.875889 Google Scholar
Tomlinson, C.L., Stowe, R., Patel, S., Rick, C., Gray, R., & Clarke, C.E. (2010). Systematic review of Levodopa dose equivalency reporting in Parkinson’s disease. Movement Disorders, 25(15), 26492685. doi:10.1002/mds.23429 Google Scholar
Yip, J.T.H., Lee, T.M.C., Ho, S.-L., Tsang, K.-L., & Li, L.S.W. (2003). Emotion recognition in patients with idiopathic Parkinson’s disease. Movement Disorders, 18(10), 11151122. doi:10.1002/mds.10497 Google Scholar
Zaini, H., Fawcett, J.M., White, N.C., & Newman, A.J. (2013). Communicative and noncommunicative point-light actions featuring high-resolution representation of the hands and fingers. Behavior Research Methods, 45(2), 319328. doi:10.3758/s13428-012-0273-2 Google Scholar
Zarei, M., Ibarretxe-Bilbao, N., Compta, Y., Hough, M., Junque, C., Bargallo, N., & Martí, M.J. (2013). Cortical thinning is associated with disease stages and dementia in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 84(8), 875881. doi:10.1136/jnnp-2012-304126 Google Scholar