Skip to main content

Modern Methods for Interrogating the Human Connectome

  • Mark J. Lowe (a1), Ken E. Sakaie (a1), Erik B. Beall (a1), Vince D. Calhoun (a2) (a3), David A. Bridwell (a2) (a3), Mikail Rubinov (a4) and Stephen M. Rao (a5)...

Objectives: Connectionist theories of brain function took hold with the seminal contributions of Norman Geschwind a half century ago. Modern neuroimaging techniques have expanded the scientific interest in the study of brain connectivity to include the intact as well as disordered brain. Methods: In this review, we describe the most common techniques used to measure functional and structural connectivity, including resting state functional MRI, diffusion MRI, and electroencephalography and magnetoencephalography coherence. We also review the most common analytical approaches used for examining brain interconnectivity associated with these various imaging methods. Results: This review presents a critical analysis of the assumptions, as well as methodological limitations, of each imaging and analysis approach. Conclusions: The overall goal of this review is to provide the reader with an introduction to evaluating the scientific methods underlying investigations that probe the human connectome. (JINS, 2016, 22, 105–119)

Corresponding author
Correspondence and reprint requests to: Stephen M. Rao, Schey Center for Cognitive Neuroimaging, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue/U10, Cleveland, OH 44195. E-mail:
Hide All
Abou-Elseoud A., Starck T., Remes J., Nikkinen J., Tervonen O., & Kiviniemi V. (2010). The effect of model order selection in group PICA. Human Brain Mapping, 31, 12071216.
Achard S., Salvador R., Whitcher B., Suckling J., & Bullmore E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26(1), 6372.
Alexander-Bloch A., Giedd J.N., & Bullmore E. (2013). Imaging structural co-variance between human brain regions. [Review]. Nature Reviews Neuroscience, 14(5), 322336.
Allen E.A., Damaraju E., Plis S.M., Erhardt E.B., Eichele T., & Calhoun V.D. (2014). Tracking Whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24(3), 663676.
Allen E.A., Erhardt E.B., Damaraju E., Gruner W., Segall J.M., Silva R.F., & Calhoun V.D. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in Systems Neuroscience, 5, 2.
Amunts K., Lepage C., Borgeat L., Mohlberg H., Dickscheid T., Rousseau M.-É., & Evans A.C. (2013). BigBrain: An ultrahigh-resolution 3D human brain model. Science, 340(6139), 14721475.
Assaf Y., Blumenfeld-Katzir T., Yovel Y., & Basser P.J. (2008). AxCaliber: A method for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance in Medicine, 59(6), 13471354.
Assemlal H.E., Tschumperle D., Brun L., & Siddiqi K. (2011). Recent advances in diffusion MRI modeling: Angular and radial reconstruction. Medical Image Analysis, 15(4), 369396.
Barazany D., Basser P.J., & Assaf Y. (2009). In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain, 132(Pt 5), 12101220.
Basser P.J., Mattiello J., & LeBihan D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259267.
Basser P.J., Pajevic S., Pierpaoli C., Duda J., & Aldroubi A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44(4), 625632.
Bassett D.S., & Bullmore E. (2006). Small-world brain networks. Neuroscientist, 12(6), 512523.
Bassett D.S., Meyer-Lindenberg A., Achard S., Duke T., & Bullmore E. (2006). Adaptive reconfiguration of fractal small-world human brain functional networks. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 1951819523.
Beall E.B., & Lowe M.J. (2007). Isolating physiologic noise sources with independently determined spatial measures. Neuroimage, 37(4), 12861300.
Beall E.B., & Lowe M.J. (2010). The non-separability of physiologic noise in functional connectivity MRI with spatial ICA at 3T. Journal of Neuroscience Methods, 191(2), 263276.
Beall E.B., & Lowe M.J. (2014). SimPACE: Generating simulated motion corrupted BOLD data with synthetic-navigated acquisition for the development and evaluation of SLOMOCO: A new, highly effective slicewise motion correction. Neuroimage, 101, 2134.
Beckmann C.F., & Smith S.M. (2005). Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage, 25(1), 294311.
Behrens T.E., Berg H.J., Jbabdi S., Rushworth M.F., & Woolrich M.W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 34(1), 144155.
Behrens T.E., & Sporns O. (2012). Human connectomics. Current Opinion in Neurobiology, 22(1), 144153.
Bendat J.S., & Piersol A.G. (2000). Random data. Analysis and measurement procedures (3rd ed.). New York: John Wiley & Sons.
Biswal B.B., & Hudetz A.G. (1996). Synchronous oscillations in cerebrocortical capillary red blood cell velocity after nitric oxide synthase inhibition. Microvascular Research, 52(1), 112.
Biswal B.B., Hudetz A.G., Yetkin F.Z., Haughton V.M., & Hyde J.S. (1997). Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI. Journal of Cerebral Blood Flow & Metabolism, 17(3), 301308.
Biswal B.B., Van Kylen J., & Hyde J.S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state. NMR in Biomedicine, 10(4-5), 165170.
Biswal B.B., Yetkin F.Z., Haughton V.M., & Hyde J.S. (1995). Functional connectivity in the motor cortex of resting human brain. Magnetic Resonance in Medicine, 34(4), 537541.
Boccaletti S., Latora V., Moreno Y., Chavez M., & Hwang D.U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4–5), 175308.
Boubela R.N., Kalcher K., Huf W., Kronnerwetter C., Filzmoser P., & Moser E. (2013). Beyond noise: Using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest. Frontiers in Human Neuroscience, 7, 168.
Brookes M.J., Hale J.R., Zumer J.M., Stevenson C.M., Francis S.T., Barnes G.R., & Nagarajan S.S. (2011). Measuring functional connectivity using MEG: Methodology and comparison with fcMRI. Neuroimage, 56(3), 10821104.
Budde M.D., Kim J.H., Liang H.F., Schmidt R.E., Russell J.H., Cross A.H., && Song S.K. (2007). Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magnetic Resonance in Medicine, 57(4), 688695.
Bullmore E.T., Brammer M.J., Rabe-Hesketh S., Curtis V.A., Morris R.G., Williams S.C., & McGuire P.K. (1999). Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI. Human Brain Mapping, 7(1), 3848.
Bullmore E.T., & Sporns O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186198.
Buzsaki G. (2006). Rhythms of the brain. New York: Oxford University Press.
Calhoun V.D., & Adali T. (2012). Multi-subject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Reviews in Biomedical Engineering, 5, 6072.
Calhoun V.D., Adali T., Pearlson G.D., & Pekar J.J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140151.
Calhoun V.D., & Allen E. (2013). Extracting intrinsic functional networks with feature-based group independent component analysis. Psychometrika, 78(2), 243259.
Calhoun V.D., Kiehl K.A., & Pearlson G.D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828838.
Calhoun V.D., Miller R., Pearlson G., & Adalı T. (2014). The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262274.
Catani M., Howard R.J., Pajevic S., & Jones D.K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage, 17(1), 7794.
Chang C., & Glover G.H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 50(1), 8198.
Cohen D., & Cuffin B.N. (1983). Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalography and Clinical Neurophysiology, 56(1), 3851.
Cole D.M., Smith S.M., & Beckmann C.F. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 8.
Colizza V., Flammini A., Serrano M.A., & Vespignani A. (2006). Detecting rich-club ordering in complex networks. [10.1038/nphys209]. Nature Physics, 2(2), 110115.
Conturo T.E., Lori N.F., Cull T.S., Akbudak E., Snyder A.Z., Shimony J.S., & Raichle M.E. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences of the United States of America, 96(18), 1042210427.
Cooper R., Crow H.J., Walter W.G., & Winter A.L. (1966). Regional control of cerebral vascular reactivity and oxygen supply in man. Brain Research, 3(2), 174191.
Cordes D., Haughton V.M., Arfanakis K., Carew J.D., Turski P.A., Moritz C.H., & Meyerand M.E. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR American Journal of Neuroradiology, 22(7), 13261333.
Cordes D., Haughton V.M., Arfanakis K., Wendt G.J., Turski P.A., Moritz C.H., & Meyerand M.E. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR American Journal of Neuroradiology, 21(9), 16361644.
Cordes D., Nandy R.R., Schafer S., & Wager T.D. (2014). Characterization and reduction of cardiac- and respiratory-induced noise as a function of the sampling rate (TR) in fMRI. Neuroimage, 89, 314330.
Cox R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162173.
Craddock R.C., Jbabdi S., Yan C.-G., Vogelstein J.T., Castellanos F.X., Di Martino A., & Milham M.P. (2013). Imaging human connectomes at the macroscale. Nature Methods, 10(6), 524539.
Crossley N.A., Mechelli A., Scott J., Carletti F., Fox P.T., McGuire P., && Bullmore E.T. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137(Pt 8), 23822395.
Csermely P., London A., Wu L.-Y., & Uzzi B. (2013). Structure and dynamics of core/periphery networks. Journal of Complex Networks, 1(2), 93123.
Damaraju E., Allen E.A., Belger A., Ford J.M., McEwen S., Mathalon D.H., & Calhoun V.D. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage. Clinical, 5, 298308.
Dora E., & Kovach A.G. (1981). Metabolic and vascular volume oscillations in the cat brain cortex. Acta Physiology of the Academy of Science of Hungary, 57(3), 261275.
Douaud G., Jbabdi S., Behrens T.E., Menke R.A., Gass A., Monsch A.U., & Smith S. (2011). DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage, 55(3), 880890.
Eguiluz V.M., Chialvo D.R., Cecchi G.A., Baliki M., & Apkarian A.V. (2005). Scale-free brain functional networks. Physical Review Letters, 94(1), 018102.
Eichele T., Calhoun V.D., & Debener S. (2009). Mining EEG–fMRI using independent component analysis. International Journal of Psychophysiology, 73(1), 5361.
Engel A.K., Fries P., & Singer W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704716.
Erhardt E.B., Rachakonda S., Bedrick E.J., Allen E.A., Adali T., & Calhoun V.D. (2011). Comparison of multi-subject ICA methods for analysis of fMRI data. Human Brain Mapping, 32(12), 20752095.
Esposito F., Scarabino T., Hyvarinen A., Himberg J., Formisano E., Comani S., & Salle F. (2005). Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage, 25(1), 193205.
Evans A.C. (2013). Networks of anatomical covariance. Neuroimage, 80, 489504.
Fortunato S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75174.
Fox M.D., & Raichle M.E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700711.
Friston K.J., Frith C.D., Liddle P.F., & Frackowiak R.S. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow & Metabolism, 13(1), 514.
Geschwind N. (1965a). Disconnexion syndromes in animals and man. I. Brain, 88(2), 237294.
Geschwind N. (1965b). Disconnexion syndromes in animals and man. II. Brain, 88(3), 585644.
Girvan M., & Newman M.E.J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 78217826.
Glover G.H., Li T.Q., & Ress D. (2000). Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 44(1), 162167.
Golanov E.V., Yamamoto S., & Resi D.J. (1994). Spontaneous waves of cerebral blood flow associated with patterns of electrocortical activity. American Journal of Physiology, 266, R204R214.
Gong G., He Y., Concha L., Lebel C., Gross D.W., Evans A.C., &&Beaulieu C. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3), 524536.
Greicius M.D., Krasnow B., Reiss A.L., & Menon V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253258.
Guo Y., & Pagnoni G. (2008). A unified framework for group independent component analysis for multi-subject fMRI data. Neuroimage, 42(3), 10781093.
Gusnard D.A., Akbudak E., Shulman G.L., & Raichle M.E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 42594264.
Hagmann P., Cammoun L., Gigandet X., Gerhard S., Grant P.E., Wedeen V.J., & Sporns O. (2010). MR connectomics: Principles and challenges. Journal of Neuroscience Methods, 194(1), 3445.
Hagmann P., Cammoun L., Gigandet X., Meuli R., Honey C.J., Wedeen V.J., && Sporns O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.
Hagmann P., Kurant M., Gigandet X., Thiran P., Wedeen V.J., Meuli R., && Thiran J.P. (2007). Mapping human whole-brain structural networks with diffusion MRI. PLoS One, 2(7), e597.
Halsey J.H. Jr., & McFarland S. (1974). Oxygen cycles and metabolic autoregulation. Stroke, 5(2), 219225.
Harrington D.L., Rubinov M., Durgerian S., Mourany L., Reece C., Koenig K., & Rao S.M. (2015). Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain, 138(Pt 8), 23322346.
He Y., Chen Z.J., & Evans A.C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17(10), 24072419.
Heinrichs H.R., & Zakzanis K.K. (1998). Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology, 12(3), 426445.
Hudetz A.G., Smith J.J., Lee J.G., Bosnjak Z.J., & Kampine J.P. (1995). Modification of cerebral laser-Doppler flow oscillations by halothane, PCO2, and nitric oxide synthase blockade. American Journal of Physiology, 269(1 Pt 2), H114H120.
Humphries M.D., & Gurney K. (2008). Network ‘Small-World-Ness’: A quantitative method for determining canonical network equivalence. PLoS One, 3(4), e0002051.
Hutchison R.M., Womelsdorf T., Allen E.A., Bandettini P.A., Calhoun V.D., Corbetta M., & Chang C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage, 80, 360378.
Hyvarinen A., Karhunen J., & Oja E. (2001). Independent component analysis. New York: John Wiley & Sons.
Insel T.R., Landis S.C., & Collins F.S. (2013). Research priorities. The NIH BRAIN Initiative. Science, 340(6133), 687688.
Iturria-Medina Y., Sotero R.C., Canales-Rodriguez E.J., Aleman-Gomez Y., & Melie-Garcia L. (2008). Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage, 40(3), 10641076.
Jafri M.J., Pearlson G.D., Stevens M., & Calhoun V.D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage, 39(4), 16661681.
Johansen-Berg H., & Behrens T.E.J. (2009). Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy (1st ed.). Boston: Elsevier/Academic Press.
Jones D.K. (2004). The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study. Magnetic Resonance in Medicine, 51(4), 807815.
Jones D.K. (2010). Diffusion MRI: Theory, methods, and applications. New York: Oxford University Press.
Kalcher K., Boubela R.N., Huf W., Bartova L., Kronnerwetter C., Derntl B., & Moser E. (2014). The spectral diversity of resting-state fluctuations in the human brain. PLoS One, 9(4), e93375.
Kenet T., Bibitchkov D., Tsodyks M., Grinvald A., & Arieli A. (2003). Spontaneously emerging cortical representations of visual attributes. Nature, 425(6961), 954956.
Kopell N.J., Gritton H.J., Whittington M.A., & Kramer M.A. (2014). Beyond the connectome: The dynome. Neuron, 83(6), 13191328.
Laufs H., Krakow K., Sterzer P., Eger E., Beyerle A., Salek-Haddadi A., && Kleinschmidt A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 1105311058.
Leonardi N., Shirer W.R., Greicius l.D., & Van De Ville D. (2014). Disentangling dynamic networks: Separated and joint expressions of functional connectivity patterns in time: Disentangling dynamic networks. Human Brain Mapping, 35(12), 59845995.
Leopold D.A., Murayama Y., & Logothetis N.K. (2003). Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cerebral Cortex, 13(4), 422433.
Liu Y., Liang M., Zhou Y., He Y., Hao Y., Song M., & Jiang T. (2008). Disrupted small-world networks in schiz+ophrenia. Brain, 131(Pt 4), 945961.
Logothetis N.K. (2002). The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1424), 10031037.
Logothetis N.K., Pauls J., Augath M., Trinath T., & Oeltermann A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150157.
Lowe M.J., Beall E.B., Sakaie K.E., Koenig K.A., Stone L., Marrie R.A., && Phillips M.D. (2008). Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Human Brain Mapping, 29(7), 818827.
Lowe M.J., Dzemidzic M., Lurito J.T., Mathews V.P., & Phillips M.D. (2000). Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage, 12(5), 582587.
Lowe M.J., Horenstein C., Hirsch J.G., Marrie R.A., Stone L., Bhattacharyya P.K., et al. (2006). Functional pathway-defined MRI diffusion measures reveal increased transverse diffusivity of water in multiple sclerosis. Neuroimage, 32(3), 11271133.
Lowe M.J., Koenig K.A., Beall E.B., Sakaie K., Stone L., Bermel R., && Phillips M.D. (2014). Anatomic connectivity assessed using pathway radial diffusivity is related to functional connectivity in monosynaptic pathways. Brain Connectivity, 4(7), 558565.
Lowe M.J., Mock B.J., & Sorenson J.A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 7(2), 119132.
Lowe M.J., & & Russell D.P. (1999). Treatment of baseline drifts in fMRI time series analysis. Journal of Computer Assisted Tomography, 23(3), 463473.
Lowe M.J., Rutecki P., Woodard A., Turski P., & Sorenson J.A. (1997). Auditory cortex fMRI noise correlations in callosal agenesis. Human Brain Mapping, 5(4), S194.
Lowe M.J., & Sorenson J.A. (1997). Spatially filtering functional magnetic resonance imaging data. Magnetic Resonance in Medicine, 37(5), 723729.
Makeig S., Debener S., Onton J., & Delorme A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204210.
McKeown M.J., Makeig S., Brown G.G., Jung T.P., Kindermann S.S., Bell A.J., && Sejnowski T.J. (1998). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6, 160629.
Mesholam-Gately R.I., Giuliano A.J., Goff K.P., Faraone S.V., & Seidman L.J. (2009). Neurocognition in first-episode schizophrenia: A meta-analytic review. Neurophysiology, 23(3), 315336.
Meunier D., Lambiotte R., & Bullmore E.T. (2010). Modular and hierarchically modular organization of brain networks. Frontiers in Neuroscience, 4, 200.
Michel C.M., Murray M.M., Lantz G., Gonzalez S., Spinelli L., & Grave de Peralta R. (2004). EEG source imaging. Clinical Neurophysiology, 115(10), 21952222.
Mori S., Crain B.J., Chacko V.P., & van Zijl P.C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265269.
Moskalenko Y.E. (1980). Biophysical aspects of cerebral circulation. Oxford: Pergamon Press.
Newman M. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167256.
Newman M. (2010). Networks: An introduction. Oxford: Oxford University Press.
Nunez P.L., Silberstein R.B., Shi Z., Carpenter M.R., Srinivasan R., Tucker D.M., & Wijesinghe R.S. (1999). EEG coherency II: Experimental comparisons of multiple measures. Clinical Neurophysiology, 110(3), 469486.
Nunez P.L., & Srinivasan R. (2006). Electric fields of the brain: The neurophysics of EEG (2nd ed.). New York: Oxford University Press.
Nunez P.L., Srinivasan R., Westdorp A.F., Wijesinghe R.S., Tucker D.M., Silberstein R. B., && Cadusch P. J. (1997). EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical Neurophysiology, 103(5), 499515.
Obrig H., Neufang M., Wenzel R., Kohl M., Steinbrink J., Einhaupl K., et al. (2000). Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. Neuroimage, 12(6), 623639.
Oguz I., Farzinfar M., Matsui J., Budin F., Liu Z., Gerig G., & Styner M. (2014). DTIPrep: Quality control of diffusion-weighted images. Frontiers in Neuroinformatics, 8, 4.
Peltier S.J., & Noll D.C. (2002). T(2)(*) dependence of low frequency functional connectivity. Neuroimage, 16(4), 985992.
Perlbarg V., Bellec P., Anton J.L., Pelegrini-Issac M., Doyon J., & Benali H. (2007). CORSICA: Correction of structured noise in fMRI by automatic identification of ICA components. Magnetic Resonance Imaging, 25(1), 3546.
Pierpaoli C., Barnett A., Pajevic S., Chen R., Penix L.R., Virta A., && Basser P. (2001). Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage, 13(6 Pt 1), 11741185.
Power J.D., Mitra A., Laumann T.O., Snyder A.Z., Schlaggar B.L., & Petersen S.E. (2012). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 84C, 320341.
Power J.D., Schlaggar B.L., & Petersen S.E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage, 105, 536551.
Press W., Teukolsky S., Vetterling W., & Flannery B. (1993). Numerical recipes in C: The art of scientific computing. Cambridge: Cambridge University Press.
Pruim R.H., Mennes M., Buitelaar J.K., & Beckmann C.F. (2015). Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Neuroimage, 112, 278287.
Quigley M., Cordes D., Turski P., Moritz C., Haughton V., Seth R., &&Meyerand M.E. (2003). Role of the corpus callosum in functional connectivity. AJNR American Journal of Neuroradiology, 24(2), 208212.
Raichle M.E., MacLeod A. M., Snyder A. Z., Powers W.J., Gusnard D.A., & Shulman G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676682.
Rashid B., Damaraju E., Pearlson G.D., & Calhoun V.D. (2014). Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Frontiers in Human Neuroscience, 8, 897.
Rubinov M., & Bullmore E. (2013). Fledgling pathoconnectomics of psychiatric disorders. Trends in Cognitive Sciences, 17(12), 641647.
Rubinov M., & Sporns O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 10591069.
Rubinov M., & Sporns O. (2011). Weight-conserving characterization of complex functional brain networks. Neuroimage, 56(4), 20682079.
Sakoğlu Ü., Pearlson G.D., Kiehl K.A., Wang Y.M., Michael A.M., & Calhoun V.D. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: Application to schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5-6), 351366.
Schmithorst V.J., & Holland S.K. (2004). Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data. Journal of Magnetic Resonance Imaging, 19(3), 365368.
Schoffelen J.-M., & Gross J. (2009). Source connectivity analysis with MEG and EEG. Human Brain Mapping, 30(6), 18571865.
Seghier M.L., & Friston K.J. (2013). Network discovery with large DCMs. Neuroimage, 68(C), 181191.
Siegel M., Donner T.H., & Engel A.K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 12, 121134.
Skare S., & Andersson J.L. (2001). On the effects of gating in diffusion imaging of the brain using single shot EPI. Magnetic Resonance in Medicine, 19(8), 11251128.
Smith S.M., Fox P.T., Miller K.L., Glahn D.C., Fox P.M., Mackay C.E., & Beckmann C.F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 1304013045.
Smith S.M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T.E., Mackay C.E., & Behrens T.E. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 14871505.
Smith S.M., Miller K.L., Salimi-Khorshidi G., Webster M., Beckmann C.F., Nichols T.E., & Woolrich M.W. (2011). Network modelling methods for FMRI. Neuroimage, 54(2), 875891.
Song S.K., Sun S.W., Ju W.K., Lin S.J., Cross A.H., & Neufeld A.H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20(3), 17141722.
Sporns O. (2012). Discovering the human connectome. Cambridge, MA: MIT Press.
Sporns O., Tononi G., & Kötter R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42.
Srinivasan R., Winter W.R., Ding J., & Nunez P.L. (2007). EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics. Journal of Neuroscience Methods, 166(1), 4152.
Stam C.J. (2004). Functional connectivity patterns of human magnetoencephalographic recordings: A ‘small-world’ network? Neuroscience Letters, 355(1–2), 2528.
Stam C.J. (2014). Modern network science of neurological disorders. [Review]. Nature Reviews Neuroscience, 15(10), 683.
Stam C.J., Jones B.F., Nolte G., Breakspear M., & Scheltens P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17(1), 9299.
Stanisz G.J., Szafer A., Wright G.A., & Henkelman R.M. (1997). An analytical model of restricted diffusion in bovine optic nerve. Magnetic Resonance in Medicine, 37(1), 103111.
Stone J.V. (2004). Independent component analysis: A tutorial introduction. Cambridge, MA: MIT press.
Strother S.C., Anderson J.R., Schaper K.A., Sidtis J.J., Liow J.S., Woods R.P., & Rottenberg D.A. (1995). Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping: I. “Functional connectivity” of the human motor system studied with [15O]water PET. Journal of Cerebral Blood Flow & Metabolism, 15(5), 738753.
Thirion B., Varoquaux G., Dohmatob E., & Poline J.-B. (2014). Which fMRI clustering gives good brain parcellations? [Original Research]. Frontiers in Neuroscience, 8, 167.
Tournier J.D., Mori S., & Leemans A. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 15321556.
van den Heuvel M.P., & Sporns O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 1577515786.
van den Heuvel M.P., & Sporns O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683696.
Van Dijk K.R., Hedden T., Venkataraman A., Evans K.C., Lazar S.W., & Buckner R.L. (2010). Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization. Journal of Neurophysiology, 103, 297321.
Varela F., Lachaux J.P., Rodriguez E., & Martinerie J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews. Neuroscience, 2(4), 229239.
Vern B.A., Schuette W.H., Leheta B., Juel V.C., & Radulovacki M. (1988). Low-frequency oscillations of cortical oxidative metabolism in waking and sleep. Journal of Cerebral Blood Flow & Metabolism, 8(2), 215226.
Wang Y., Wang Q., Haldar J.P., Yeh F.C., Xie M., Sun P., & Song S.K. (2011). Quantification of increased cellularity during inflammatory demyelination. Brain, 134(Pt 12), 35903601.
Watts D.J., & Strogatz S.H. (1998). Collective dynamics of /“small-world/” networks. Nature, 393(6684), 440442.
Wheeler-Kingshott C.A., & Cercignani M. (2009). About “axial” and “radial” diffusivities. Magnetic Resonance in Medicine, 61(5), 12551260.
Yaesoubi M., Miller R.L., & Calhoun V.D. (2015). Mutually temporally independent connectivity patterns: A new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender. Neuroimage, 107, 8594.
Yang H., Long X.Y., Yang Y., Yan H., Zhu C.Z., Zhou X.P., & Gong Q, Y. (2007). Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage, 36(1), 144152.
Yendiki A., Koldewyn K., Kakunoori S., Kanwisher N., & Fischl B. (2013). Spurious group differences due to head motion in a diffusion MRI study. Neuroimage, 88C, 7990.
Yendiki A., Panneck P., Srinivasan P., Stevens A., Zollei L., Augustinack J., & Fischl B. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics, 5, 23.
Zang Y., Jiang T., Lu Y., He Y., & Tian L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394400.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 16
Total number of PDF views: 144 *
Loading metrics...

Abstract views

Total abstract views: 452 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th November 2017. This data will be updated every 24 hours.