Skip to main content
×
Home
    • Aa
    • Aa

The Allure of High-Risk Rewards in Huntington’s disease

  • Nelleke C. van Wouwe (a1), Kristen E. Kanoff (a1), Daniel O. Claassen (a1), K. Richard Ridderinkhof (a2) (a3), Peter Hedera (a1), Madaline B. Harrison (a4) and Scott A. Wylie (a1)...
Abstract
Abstract

Objectives: Huntington’s disease (HD) is a neurodegenerative disorder that produces a bias toward risky, reward-driven decisions in situations where the outcomes of decisions are uncertain and must be discovered. However, it is unclear whether HD patients show similar biases in decision-making when learning demands are minimized and prospective risks and outcomes are known explicitly. We investigated how risk decision-making strategies and adjustments are altered in HD patients when reward contingencies are explicit. Methods: HD (N=18) and healthy control (HC; N=17) participants completed a risk-taking task in which they made a series of independent choices between a low-risk/low reward and high-risk/high reward risk options. Results: Computational modeling showed that compared to HC, who showed a clear preference for low-risk compared to high-risk decisions, the HD group valued high-risks more than low-risk decisions, especially when high-risks were rewarded. The strategy analysis indicated that when high-risk options were rewarded, HC adopted a conservative risk strategy on the next trial by preferring the low-risk option (i.e., they counted their blessings and then played the surer bet). In contrast, following a rewarded high-risk choice, HD patients showed a clear preference for repeating the high-risk choice. Conclusions: These results indicate a pattern of high-risk/high-reward decision bias in HD that persists when outcomes and risks are certain. The allure of high-risk/high-reward decisions in situations of risk certainty and uncertainty expands our insight into the dynamic decision-making deficits that create considerable clinical burden in HD. (JINS, 2016, 22, 426–435)

Copyright
Corresponding author
Correspondence and reprint requests to: Nelleke C. van Wouwe, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232. Email: nelleke.van.wouwe@vanderbilt.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Y.S. Abada , H.P. Nguyen , B. Ellenbroek , & R. Schreiber (2013). Reversal learning and associative memory impairments in a BACHD rat model for Huntington disease. PLoS One, 8(11), e71633. doi:10.1371/journal.pone.0071633

R.L. Albin , A.B. Young , & J.B. Penney (1989). The functional anatomy of basal ganglia disorders. Trends in Neuroscience, 12(10), 366375.

D.J. Barraclough , M.L. Conroy , & D. Lee (2004). Prefrontal cortex and decision making in a mixed-strategy game. Nature Neuroscience, 7(4), 404410. doi:10.1038/nn1209

J. Brandt , A.B. Inscore , J. Ward , B. Shpritz , A. Rosenblatt , R.L. Margolis , & C.A. Ross (2008). Neuropsychological deficits in Huntington’s disease gene carriers and correlates of early “conversion”. Journal of Neuropsychiatry & Clinical Neurosciences, 20(4), 466472. doi:10.1176/appi.neuropsych.20.4.466

S.P. Brooks , N. Janghra , G.V. Higgs , Z. Bayram-Weston , A. Heuer , L. Jones , & S.B. Dunnett (2012). Selective cognitive impairment in the YAC128 Huntington’s disease mouse. Brain Research Bulletin, 88(2-3), 121129. doi:10.1016/j.brainresbull.2011.05.010

M.C. Campbell , J.C. Stout , & P.R. Finn (2004). Reduced autonomic responsiveness to gambling task losses in Huntington’s disease. Journal of the International Neuropsychological Society, 10(2), 239245. doi:10.1017/S1355617704102105

X. Cohen, M. , A.S. Heller , & C. Ranganath (2005). Functional connectivity with anterior cingulate and orbitofrontal cortices during decision-making. Cognitive Brain Research, 23(1), 6170. doi:10.1016/j.cogbrainres.2005.01.010

K. Duff , J.S. Paulsen , L.J. Beglinger , D.R. Langbehn , C. Wang , J.C. Stout , ... Predict-HD Investigators of the Huntington Study Group. (2010). “Frontal” behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: Evidence of early lack of awareness. Journal of Neuropsychiatry & Clinical Neurosciences, 22(2), 196207. doi:10.1176/appi.neuropsych.22.2.196

N. El Massioui , S. Ouary , F. Cheruel , P. Hantraye , & E. Brouillet (2001). Perseverative behavior underlying attentional set-shifting deficits in rats chronically treated with the neurotoxin 3-nitropropionic acid. Experimental Neurology, 172(1), 172181. doi:10.1006/exnr.2001.7766

J.B. Engelmann , & D. Tamir (2009). Individual differences in risk preference predict neural responses during financial decision-making. Brain Research, 1290, 2851. doi:10.1016/j.brainres.2009.06.078

B. Enzi , M.A. Edel , S. Lissek , S. Peters , R. Hoffmann , V. Nicolas , & C. Saft (2012). Altered ventral striatal activation during reward and punishment processing in premanifest Huntington’s disease: A functional magnetic resonance study. Experimental Neurology, 235(1), 256264. doi:10.1016/j.expneurol.2012.02.003

K.D. Fink , J. Rossignol , A.T. Crane , K.K. Davis , A.M. Bavar , N.W. Dekorver , & G.L. Dunbar (2012). Early cognitive dysfunction in the HD 51 CAG transgenic rat model of Huntington’s disease. Behavioral Neuroscience, 126(3), 479487. doi:10.1037/a0028028

M.F. Folstein , S.E. Folstein , & P.R. McHugh (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.

C. Kalkhoven , C. Sennef , A. Peeters , & R. van den Bos (2014). Risk-taking and pathological gambling behavior in Huntington’s disease. Frontiers in Behavioral Neuroscience, 8, doi:10.3389/fnbeh.2014.00103

A.D. Lawrence , B.J. Sahakian , R.D. Rogers , J.R. Hodge , & T.W. Robbins (1999). Discrimination, reversal, and shift learning in Huntington’s disease: Mechanisms of impaired response selection. Neuropsychologia, 37(12), 13591374.

J.W. Mink , & W.T. Thach (1993). Basal ganglia intrinsic circuits and their role in behavior. Currernt Opinion in Neurobiology, 3(6), 950957.

J.S. Paulsen (2009). Functional imaging in Huntington’s disease. Experimental Neurology, 216(2), 272277. doi:10.1016/j.expneurol.2008.12.015

H.D. Rosas , W.J. Koroshetz , Y.I. Chen , C. Skeuse , M. Vangel , M.E. Cudkowicz , & J.M. Goldstein (2003). Evidence for more widespread cerebral pathology in early HD: An MRI-based morphometric analysis. Neurology, 60(10), 16151620.

R.B. Rutledge , S.C. Lazzaro , B. Lau , C.E. Myers , M.A. Gluck , & P.W. Glimcher (2009). Dopaminergic drugs modulate learning rates and perseveration in Parkinson’s patients in a dynamic foraging task. Journal of Neuroscience, 29(48), 1510415114. doi:10.1523/JNEUROSCI.3524-09.2009

W. Schultz (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241263.

L.C. Schwab , S.N. Garas , J. Drouin-Ouellet , S.L. Mason , S.R. Stott , & R.A. Barker (2015). Dopamine and Huntington’s disease. Expert Review of Neurotherapeutics, 15(4), 445458. doi:10.1586/14737175.2015.1025383

J.C. Stout , W.C. Rodawalt , & E.R. Siemers (2001). Risky decision making in Huntington’s disease. Journal of the International Neuropsychological Society, 7(1), 92101.

D.R. Thiruvady , N. Georgiou-Karistianis , G.F. Egan , S. Ray , A. Sritharan , M. Farrow , & R. Cunnington (2007). Functional connectivity of the prefrontal cortex in Huntington’s disease. Journal of Neurology, Neurosurgery, & Psychiatry, 78(2), 127133. doi:10.1136/jnnp.2006.098368

M.T. Treadway , & D.H. Zald (2013). Parsing anhedonia: Translational models of reward-processing deficits in psychopathology. Current Directions in Psychological Science, 22(3), 244249. doi:10.1177/0963721412474460

A. Tversky , & D. Kahneman (1981). The framing of decisions and the psychology of choice. Science, 211(4481), 453458.

J.M. Van Raamsdonk , J. Pearson , E.J. Slow , S.M. Hossain , B.R. Leavitt , & M.R. Hayden (2005). Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. Journal of Neuroscience, 25(16), 41694180. doi:10.1523/JNEUROSCI.0590-05.2005

T.C. Hadzi , A.E. Hendricks , J.C. Latourelle , K.L. Lunetta , L.A. Cupples , T. Gillis , & J.P. Vonsattel (2012). Assessment of cortical and striatal involvement in 523 Huntington disease brains. Neurology, 79(16), 17081715. doi:10.1212/WNL.0b013e31826e9a5d

C. Sanchez-Castaneda , A. Cherubini , F. Elifani , P. Peran , S. Orobello , G. Capelli ,& F. Squitieri (2013). Seeking Huntington disease biomarkers by multimodal, cross-sectional basal ganglia imaging. Human Brain Mapping, 34(7), 16251635. doi:10.1002/hbm.22019

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 6
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 145 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th September 2017. This data will be updated every 24 hours.