Skip to main content Accesibility Help
×
×
Home

Head Growth and Intelligence from Birth to Adulthood in Very Preterm and Term Born Individuals

  • Julia Jaekel (a1) (a2), Christian Sorg (a3) (a4) (a5), Josef Baeuml (a3) (a4) (a5), Peter Bartmann (a6) and Dieter Wolke (a2) (a7)...
Abstract

Objectives: The aim of this study was to investigate the effects of infant and toddler head growth on intelligence scores from early childhood to adulthood in very preterm (<32 weeks gestational age; VP) and/or very low birth weight (<1500 g; VLBW) and term born individuals. Methods: 203 VP/VLBW and 198 term comparisons were studied from birth to adulthood as part of the prospective geographically defined Bavarian Longitudinal Study (BLS). Head circumference was assessed at birth; 5, 20 months; and 4 years of age. Intelligence was assessed with standardized tests in childhood (6 and 8 years: K-ABC) and at 26 years (Wechsler Adult Intelligence Scale, WAIS). Structural equation modeling (SEM) was used to model the effect of head growth on IQ. Results: On average, VP/VLBW had lower head circumference at birth (27.61 cm vs. 35.11 cm, mean difference 7.49, 95% confidence interval [7.09–7.90]) and lower adult intelligence scores (88.98 vs. 102.54, mean difference 13.56 [10.59–16.53]) than term born comparison individuals. Head circumference at birth (e.g., total effect β=.48; p<.001 for adult IQ) and head growth in childhood predicted intelligence development from age 6 to 26 years in both VP/VLBW and term born individuals (70% of variance in adult IQ explained by full model). Effects of gestation and birth weight on intelligence were fully mediated by head circumference and growth. Conclusions: This longitudinal investigation from birth to adulthood indicates head growth as a proxy of brain development and intelligence. Repeated early head circumference assessment adds valuable information when screening for long-term neurocognitive risk. (JINS, 2019, 25, 48#x2013;56)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Head Growth and Intelligence from Birth to Adulthood in Very Preterm and Term Born Individuals
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Head Growth and Intelligence from Birth to Adulthood in Very Preterm and Term Born Individuals
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Head Growth and Intelligence from Birth to Adulthood in Very Preterm and Term Born Individuals
      Available formats
      ×
Copyright
Corresponding author
Correspondence and reprint requests to: Dieter Wolke, Department of Psychology, University of Warwick, Coventry CV4 7AL, UK. E-mail: d.wolke@warwick.ac.uk
References
Hide All
Anderson, P.J., Treyvaud, K., Neil, J.J., Cheong, J.L.Y., Hunt, R.W., Thompson, D.K., … Inder, T.E. (2017). Associations of newborn brain magnetic resonance imaging with long-term neurodevelopmental impairments in very preterm children. The Journal of Pediatrics, 187, 5865. doi: 10.1016/j.jpeds.2017.04.059
Aslin, R.N., & Fiser, J. (2005). Methodological challenges for understanding cognitive development in infants. Trends in Cognitive Sciences, 9(3), 9298. doi: 10.1016/j.tics.2005.01.003
Ball, G., Boardman, J.P., Rueckert, D., Aljabar, P., Arichi, T., Merchant, N., … Counsell, S.J. (2012). The effect of preterm birth on thalamic and cortical development. Cerebral Cortex, 22, 10161024.
Bartholomeusz, H.H., Courchesne, E., & Karns, C.M. (2002). Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics, 33(5), 239241. doi: 10.1055/s-2002-36735
Bauer, A. (1988). Ein Verfahren zur Messung des fuer das Bildungsverhalten relevanten Sozial Status (BRSS) - ueberarbeitete Fassung. Frankfurt: Deutsches Institut fuer Internationale Paedagogische Forschung.
Bäuml, J.G., Daamen, M., Meng, C., Neitzel, J., Scheef, L., Jaekel, J., … Sorg, C. (2015). Correspondence between aberrant intrinsic network connectivity and gray matter volume in the ventral brain of preterm born adults. Cerebral Cortex, 25, 41354145. doi:10.1093/cercor/bhu133
Belfort, M.B., Anderson, P.J., Nowak, V.A., Lee, K.J., Molesworth, C., Thompson, D.K., … Inder, T.E. (2016). Breast milk feeding, brain development, and neurocognitive outcomes: A 7-year longitudinal study in infants born at less than 30 weeks’ gestation. The Journal of Pediatrics, 177, 133139.e131. doi: 10.1016/j.jpeds.2016.06.045
Benzies, K., Magill-Evans, J., Hayden, K., & Ballantyne, M. (2013). Key components of early intervention programs for preterm infants and their parents: A systematic review and meta-analysis. BMC Pregnancy and Childbirth, 13(Suppl. 1), S10.
Bornstein, M.H., Hahn, C.-S., & Wolke, D. (2013). Systems and cascades in cognitive development and academic achievement. Child Development, 84(7), 154162. doi:10.1111/j.1467-8624.2012.01849.x
Brandt, I. (1983). Griffiths Entwicklungsskalen (GES zur Beurteilung der Entwicklung in den ersten beiden Lebensjahren). Weinheim: Beltz.
Breeman, L.D., Jaekel, J., Baumann, N., Bartmann, P., & Wolke, D. (2015). Preterm cognitive function into adulthood. Pediatrics, 136(3), 415423. doi:10.1542/peds.2015-0608
Cheong, J.L., Anderson, P.J., Burnett, A.C., Roberts, G., Davis, N., Hickey, L., … Doyle, L.W. (2017). Changing neurodevelopment at 8 years in children born extremely preterm since the 1990s. Pediatrics, 139, pii: e201664086. doi:10.1542/peds.2016-4086
Cheong, J.L., Hunt, R.W., Anderson, P.J., Howard, K., Thompson, D.K., Wang, H.X., … Doyle, L.W. (2008). Head growth in preterm infants: Correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics, 121(6), e1534e1540. doi:10.1542/peds.2007-2671
Christmann, V., Roeleveld, N., Visser, R., Janssen, A.J.W.M., Reuser, J.J.C.M., van Goudoever, J.B., & van Heijst, A.F.J. (2017). The early postnatal nutritional intake of preterm infants affected neurodevelopmental outcomes differently in boys and girls at 24 months. Acta Paediatrica, 106(2), 242249. doi:10.1111/apa.13669
Cockerill, J., Uthaya, S., Doré, C.J., & Modi, N. (2006). Accelerated postnatal head growth follows preterm birth. Archives of Disease in Childhood - Fetal and Neonatal Edition, 91(3), F184F187. doi:10.1136/adc.2005.077818
Doyle, L.W., Anderson, P.J., Battin, M., Bowen, J.R., Brown, N., Callanan, C., … Woodward, L.J. (2014). Long term follow up of high risk children: Who, why and how? BMC Pediatrics, 14(1), 279. doi:10.1186/1471-2431-14-279
Edwards, A.D., Redshaw, M.E., Kennea, N., Rivero-Arias, O., Gonzales-Cinca, N., Nongena, P., … Counsell, S. (2018). Effect of MRI on preterm infants and their families: A randomised trial with nested diagnostic and economic evaluation. Archives of Disease in Childhood. Fetal and Neonatal Edition, 103(1), F15F21. doi:10.1136/archdischild-2017-313102
Eryigit Madzwamuse, S., Baumann, N., Jaekel, J., Bartmann, P., & Wolke, D. (2015). Neuro‐cognitive performance of very preterm or very low birth weight adults at 26 years. Journal of Child Psychology and Psychiatry, 56(8), 857864.
Fenton, T.R., & Kim, J.H. (2013). A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatrics, 13(1), 59. doi:10.1186/1471-2431-13-59
Gale, C.R., O’Callaghan, F.J., Bredow, M., & Martyn, C.N. (2006). The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics, 118(4), 14861492. doi:10.1542/peds.2005-2629
Garcia-Alix, A., Saenz-de Pipaon, M., Martinez, M., Salas-Hernandez, S., & Quero, J. (2004). [Ability of neonatal head circumference to predict long-term neurodevelopmental outcome]. Revista de Neurologia, 39(6), 548554.
Hack, M., Taylor, H.G., Drotar, D., Schluchter, M., Cartar, L., Wilson-Costello, D., … Morrow, M. (2005). Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics, 116(2), 333341. doi:10.1542/peds.2005-0173
Hille, E.T.M., Elbertse, L., Gravenhorst, J.B., Brand, R., & Verloove-Vanhorick, S.P. (2005). Nonresponse bias in a follow-up study of 19-year-old adolescents born as preterm infants. Pediatrics, 116, e662e666. doi:10.1542/peds.2005-0682
Hintz, S.R., Vohr, B.R., Bann, C.M., Taylor, H.G., Das, A., Gustafson, K.E., … Higgins, R.D. (2018). Preterm neuroimaging and school-age cognitive outcomes. Pediatrics. 142, pii: e20174058. doi:10.1542/peds.2017-4058
Holland, D., Chang, L., Ernst, T.M., Curran, M., Buchthal, S.D., Alicata, D., … Dale, A.M. (2014). Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurology, 71(10), 12661274. doi:10.1001/jamaneurol.2014.1638
Jaekel, J., Baumann, N., & Wolke, D. (2013). Effects of gestational age at birth on cognitive performance: A function of cognitive workload demands. PLoS One, 8(5), e65219. doi:10.1371/journal.pone.0065219
Jaekel, J., Schölmerich, A., Kassis, W., & Leyendecker, B. (2011). Parental bookreading as a resource for pre-schoolers´ cognitive skills in Turkish migrant and German non-migrant families. International Journal of Developmental Science, 5, 113.
James, H.E., Perszyk, A.A., MacGregor, T.L., & Aldana, P.R. (2015). The value of head circumference measurements after 36 months of age: A clinical report and review of practice patterns. Journal of Neurosurgery. Pediatrics, 16(2), 186194. doi:10.3171/2014.12.peds14251
Kapellou, O., Counsell, S.J., Kennea, N., Dyet, L., Saeed, N., Stark, J., … Edwards, A.D. (2006). Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med, 3(8), e265.
Keunen, K., van Elburg, R.M., van Bel, F., & Benders, M.J.N.L. (2015). Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatric Research, 77(1-2), 148155. doi:10.1038/pr.2014.171
Kidokoro, H., Anderson, P.J., Doyle, L.W., Woodward, L.J., Neil, J.J., & Inder, T.E. (2014). Brain injury and altered brain growth in preterm infants: Predictors and prognosis. Pediatrics, 134(2), e444e453. doi:10.1542/peds.2013-2336
Kiesler, J., & Ricer, R. (2003). The abnormal fontanel. American Family Physician, 67(12), 25472552.
Lange, N., Froimowitz, M.P., Bigler, E.D., & Lainhart, J.E. (2010). Associations between IQ, total and regional brain volumes and demography in a large normative sample of healthy children and adolescents. Developmental Neuropsychology, 35(3), 296317. doi:10.1080/87565641003696833
Li, G., Wang, L., Shi, F., Lyall, A.E., Lin, W., Gilmore, J.H., & Shen, D. (2014). Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. The Journal of Neuroscience, 34(12), 42284238. doi:10.1523/jneurosci.3976-13.2014
Lyall, A.E., Shi, F., Geng, X., Woolson, S., Li, G., Wang, L., … Gilmore, J.H. (2015). Dynamic development of regional cortical thickness and surface area in early childhood. Cerebral Cortex, 25(8), 22042212. doi:10.1093/cercor/bhu027
Makropoulos, A., Aljabar, P., Wright, R., Hüning, B., Merchant, N., Arichi, T., … Rueckert, D. (2016). Regional growth and atlasing of the developing human brain. NeuroImage, 125, 456478. doi: http://dx.doi.org/10.1016/j.neuroimage.2015.10.047
Marioni, R.E., Davies, G., Hayward, C., Liewald, D., Kerr, S.M., Campbell, A., … Deary, I.J. (2014). Molecular genetic contributions to socioeconomic status and intelligence. Intelligence, 44, 2632. doi: http://dx.doi.org/10.1016/j.intell.2014.02.006
McCormick, M.C., Brooks-Gunn, J., Buka, S.L., Goldman, J., Yu, J., Salganik, M., … Casey, P.H. (2006). Early intervention in low birth weight premature infants: Results at 18 years of age for the Infant Health and Development Program. Pediatrics, 117(3), 771780.
Melchers, P., & Preuss, U. (1991). K-ABC: Kaufman Battery for Children: Deutschsprachige Fassung. Frankfurt, AM: Swets & Zeitlinger.
Melhuish, E.C. (2011). Preschool matters. Science, 333(6040), 299300. doi:10.1126/science.1209459
Meng, C., Bauml, J.G., Daamen, M., Jaekel, J., Neitzel, J., Scheef, L., … Sorg, C. (2016). Extensive and interrelated subcortical white and gray matter alterations in preterm-born adults. Brain Structure & Function, 221(4), 21092121. doi:10.1007/s00429-015-1032-9
Milgrom, J., Newnham, C., Anderson, P.J., Doyle, L.W., Gemmill, A.W., Lee, K., … Inder, T. (2010). Early sensitivity training for parents of preterm infants: Impact on the developing brain. Pediatric Research, 67(3), 330335.
Moore, T., Hennessy, E.M., Myles, J., Johnson, S., Draper, E.S., Costeloe, K.L., & Marlow, N. (2012). Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: The EPICure studies. BMJ, 345, e7961. doi:10.1136/bmj.e7961
Padilla, N., Alexandrou, G., Blennow, M., Lagercrantz, H., & Ådén, U. (2015). Brain growth gains and losses in extremely preterm infants at term. Cerebral Cortex, 25(7), 18971905. doi:10.1093/cercor/bht431
Parker, J., Mitchell, A., Kalpakidou, A., Walshe, M., Jung, H.-Y., Nosarti, C., … Allin, M. (2008). Cerebellar growth and behavioural & neuropsychological outcome in preterm adolescents. Brain, 131, 13441351.
Pineda, R.G., Neil, J., Dierker, D., Smyser, C.D., Wallendorf, M., Kidokoro, H., … Inder, T. (2014). Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. The Journal of Pediatrics, 164(1), 5260.e52. doi: http://dx.doi.org/10.1016/j.jpeds.2013.08.047
Räikkönen, K., Forsén, T., Henriksson, M., Kajantie, E., Heinonen, K., Pesonen, A.-K., … Eriksson, J.G. (2009). Growth trajectories and intellectual abilities in young adulthood: The Helsinki Birth Cohort Study. American Journal of Epidemiology, 170(4), 447455. doi:10.1093/aje/kwp132
Sameroff, A.J., Seifer, R., Barocas, R., Zax, M., & Greenspan, S. (1987). Intelligence quotient scores of 4-year-old children: Social-environmental risk factors. Pediatrics, 79(3), 343350.
Sammallahti, S., Heinonen, K., Andersson, S., Lahti, M., Pirkola, S., Lahti, J., … Raikkonen, K. (2017). Growth after late-preterm birth and adult cognitive, academic, and mental health outcomes. Pediatric Research, 81, 767774. doi:10.1038/pr.2016.276
Sammallahti, S., Pyhala, R., Lahti, M., Lahti, J., Pesonen, A.K., Heinonen, K., … Raikkonen, K. (2014). Infant growth after preterm birth and neurocognitive abilities in young adulthood. The Journal of Pediatrics, 165(6), 11091115.e1103. doi:10.1016/j.jpeds.2014.08.028
Schneider, W., Niklas, F., & Schmiedeler, S. (2014). Intellectual development from early childhood to early adulthood: The impact of early IQ differences on stability and change over time. Learning and Individual Differences, 32, 156162. doi: 10.1016/j.lindif.2014.02.001
Silventoinen, K., Iacono, W.G., Krueger, R., & McGue, M. (2012). Genetic and environmental contributions to the association between anthropometric measures and IQ: A study of Minnesota twins at age 11 and 17. Behavior Genetics, 42(3), 393401. doi:10.1007/s10519-011-9521-y
Usami, S., Hayes, T., & McArdle, J. (2017). Fitting structural equation model trees and latent growth curve mixture models in longitudinal designs: The influence of model misspecification. Structural Equation Modeling: A Multidisciplinary Journal, 24(4), 585598. doi:10.1080/10705511.2016.1266267
Von Aster, M., Neubauer, A., & Horn, R. (2006). Wechsler Intelligenztest für Erwachsene (WIE) [Wechsler Adult Intelligence Scale (WAIS III)]. Frankfurt/Main, Germany: Harcourt Test Services.
WHO. (2007). WHO Child Growth Standards: Head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: Methods and development. Retrieved from http://www.who.int/childgrowth/publications/en
Wilson-Ching, M., Pascoe, L., Doyle, L.W., & Anderson, P.J. (2014). Effects of correcting for prematurity on cognitive test scores in childhood. Journal of Paediatrics and Child Health, 50(3), 182188. doi:doi:10.1111/jpc.12475
Wolke, D., Jaekel, J., Hall, J., & Baumann, N. (2013). Effects of sensitive parenting on the academic resilience of very preterm and very low birth weight adolescents. Journal of Adolescent Health, 53(5), 642647.
Wolke, D., & Meyer, R. (1999). Cognitive status, language attainment, and prereading skills of 6-year-old very preterm children and their peers: The Bavarian Longitudinal Study. Developmental Medicine & Child Neurology, 41, 94109.
Wolke, D., Strauss, V.Y.-C., Johnson, S., Gilmore, C., Marlow, N., & Jaekel, J. (2015). Universal gestational age effects on cognitive and basic mathematic processing: 2 cohorts in 2 countries. The Journal of Pediatrics, 166(6), 14101416. e1412.
Wright, C.M., & Emond, A. (2015). Head growth and neurocognitive outcomes. Pediatrics, 135(6), e1393e1398. doi:10.1542/peds.2014-3172
Zander, J., Holzmann, K., & Selbmann, H.K. (1989). Materialien aus der bayerischen Perinatalerhebung zur Problematik der Sectiofrequenz [Data from the Bavarian perinatal survey on the problem of the incidence of cesarean section]. Geburtshilfe Frauenheilkunde, 49(4), 328336.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Jaekel et al. supplementary material
Appendix Figures 1 and 2

 Word (206 KB)
206 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed