Skip to main content Accessibility help
×
×
Home

Latent Cognitive Phenotypes in De Novo Parkinson’s Disease: A Person-Centered Approach

  • Denise R. LaBelle (a1), Ryan R. Walsh (a1) and Sarah J. Banks (a1)

Abstract

Objectives: Cognitive impairment is an important aspect of Parkinson’s disease (PD), but there is considerable heterogeneity in its presentation. This investigation aims to identify and characterize latent cognitive phenotypes in early PD. Methods: Latent class analysis, a data-driven, person-centered, cluster analysis was performed on cognitive data from the Parkinson’s Progressive Markers Initiative baseline visit. This analytic method facilitates identification of naturally occurring endophenotypes. Resulting classes were compared across biomarker, symptom, and demographic data. Results: Six cognitive phenotypes were identified. Three demonstrated consistent performance across indicators, representing poor (“Weak-Overall”), average (“Typical-Overall”), and strong (“Strong-Overall”) cognition. The remaining classes demonstrated unique patterns of cognition, characterized by “Strong-Memory,” “Weak-Visuospatial,” and “Amnestic” profiles. The Amnestic class evidenced greater tremor severity and anosmia, but was unassociated with biomarkers linked with Alzheimer’s disease. The Weak-Overall class was older and reported more non-motor features associated with cognitive decline, including anxiety, depression, autonomic dysfunction, anosmia, and REM sleep behaviors. The Strong-Overall class was younger, more female, and reported less dysautonomia and anosmia. Classes were unrelated to disease duration, functional independence, or available biomarkers. Conclusions: Latent cognitive phenotypes with focal patterns of impairment were observed in recently diagnosed individuals with PD. Cognitive profiles were found to be independent of traditional biomarkers and motoric indices of disease progression. Only globally impaired class was associated with previously reported indicators of cognitive decline, suggesting this group may drive the effects reported in studies using variable-based analysis. Longitudinal and neuroanatomical characterization of classes will yield further insight into the evolution of cognitive change in the disease. (JINS, 2017, 23, 551–563)

Copyright

Corresponding author

Correspondence and reprint requests to: Denise R. LaBelle, Cleveland Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville Avenue, Las Vegas, NV, 89106. E-mail: labelld@ccf.org

References

Hide All
Aarsland, D., Andersen, K., Larsen, J.P., Lolk, A., & Kragh-Sørensen, P. (2003). Prevalence and characteristics of dementia in Parkinson disease: An 8-year prospective study. Archives of Neurology, 60(3), 387392.
Aarsland, D., & Kurz, M.W. (2010a). The epidemiology of dementia associated with Parkinson’s disease. Brain Pathology, 20(3), 633639.
Aarsland, D., & Kurz, M.W. (2010b). The epidemiology of dementia associated with Parkinson disease. Journal of the Neurological Sciences, 289(1), 1822.
Aarsland, D., Larsen, J.P., Tandberg, E., & Laake, K. (2000). Predictors of nursing home placement in Parkinson’s disease: A population-based, prospective study. Journal of the American Geriatrics Society, 48(8), 938942.
Almeida, O.P., & Almeida, S.A. (1999). Short versions of the geriatric depression scale: A study of their validity for the diagnosis of a major depressive episode according to ICD-10 and DSM-IV. International Journal of Geriatric Psychiatry, 14(10), 858865.
Alves, G., Larsen, J.P., Emre, M., Wentzel-Larsen, T., & Aarsland, D. (2006). Changes in motor subtype and risk for incident dementia in Parkinson’s disease. Movement Disorders, 21(8), 11231130.
Barone, P., Aarsland, D., Burn, D., Emre, M., Kulisevsky, J., & Weintraub, D. (2011). Cognitive impairment in nondemented Parkinson’s disease. Movement Disorders, 26(14), 24832495.
Barone, P., Antonini, A., Colosimo, C., Marconi, R., Morgante, L., Avarello, T.P., & Del Dotto, P. (2009). The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Movement Disorders, 24(11), 16411649.
Benton, A.L., Varney, N.R., & Hamsher, K.D. (1978). Visuospatial judgment. A clinical test. Archives of Neurology, 35(6), 364367.
Brandt, J., & Benedict, R. (2001). Hopkins Verbal Learning Test-Revised. Odessa, FL: Psychological Assessment Resources.
Burn, D.J., Rowan, E.N., Allan, L.M., Molloy, S., O’Brien, J.T., & McKeith, I.G. (2006). Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. Journal of Neurology, Neurosurgery, and Psychiatry, 77(5), 585589.
Chaudhuri, K.R., Healy, D.G., & Schapira, A.H.V. (2006). Non-motor symptoms of Parkinson’s disease: Diagnosis and management. The Lancet. Neurology, 5(3), 235245.
Compta, Y., Martí, M.J., Ibarretxe-Bilbao, N., Junqué, C., Valldeoriola, F., Muñoz, E., & Tolosa, E. (2009). Cerebrospinal tau, phospho-tau, and beta-amyloid and neuropsychological functions in Parkinson’s disease. Movement Disorders, 24(15), 22032210.
Cormack, F., Aarsland, D., Ballard, C., & Tove, M.J. (2004). Pentagon drawing and neuropsychological performance in Dementia with Lewy Bodies, Alzheimer’s disease, Parkinson’s disease and Parkinson’s disease with dementia. International Journal of Geriatric Psychiatry, 19, 371377.
Doty, R.L., Frye, R.E., & Agrawal, U. (1989). Internal consistency reliability of the fractionated and whole University of Pennsylvania Smell Identification Test. Perception & Psychophysics, 45(5), 381384.
Dujardin, K., Leentjens, A.F.G., Langlois, C., Moonen, A.J.H., Duits, A.A., Carette, A.S., & Duhamel, A. (2013). The spectrum of cognitive disorders in Parkinson’s disease: A data-driven approach. Movement Disorders, 28(2), 183189.
Emre, M., Aarsland, D., Brown, R., Burn, D.J., Duyckaerts, C., Mizuno, Y., & Dubois, B. (2007). Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Movement Disorders, 22(12), 16891707.
Erro, R., Picillo, M., Vitale, C., Palladino, R., Amboni, M., Moccia, M., & Barone, P. (2016). Clinical clusters and dopaminergic dysfunction in de-novo Parkinson disease. Parkinsonism & Related Disorders, 28, 137140.
Federoff, M., Jimenez-Rolando, B., Nalls, M.A., & Singleton, A.B. (2012). A large study reveals no association between APOE and Parkinson’s disease. Neurobiology of Disease, 46(2), 389392.
Gladsjo, J.A., Schuman, C.C., Evans, J.D., Peavy, G.M., Miller, S.W., & Heaton, R.K. (1999). Norms for letter and category fluency: Demographic corrections for age, education, and ethnicity. Assessment, 6(2), 147178.
Goetz, C.G., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stebbins, G.T., & LaPelle, N. (2007). Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Movement Disorders, 22(1), 4147.
Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., & Martinez-Martin, P., . . . Movement Disorder Society UPDRS Revision Task Force. (2008). Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders, 23(15), 21292170.
Goldman, J.G., & Litvan, I. (2011). Mild cognitive impairment in Parkinson’s disease. Minerva Medica, 102(6), 441459.
Goldman, J.G., Weis, H., Stebbins, G., Bernard, B., & Goetz, C.G. (2012). Clinical differences among mild cognitive impairment subtypes in Parkinson’s disease. Movement Disorders, 27(9), 11291136.
Graham, J.M., & Sagar, H.J. (1999). A data-driven approach to the study of heterogeneity in idiopathic Parkinson’s disease: Identification of three distinct subtypes. Movement Disorders, 14(1), 1020.
Hely, M.A., Morris, J.G., Traficante, R., Reid, W.G., O’Sullivan, D.J., & Williamson, P.M. (1999). The sydney multicentre study of Parkinson’s disease: Progression and mortality at 10 years. Journal of Neurology, Neurosurgery, and Psychiatry, 67(3), 300307.
Hoehn, M.M., & Yahr, M.D. (1967). Parkinsonism: Onset, progression and mortality. Neurology, 17(5), 427442.
Johns, M.W. (1991). A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep, 14(6), 540545.
Jung, T., & Wickrama, K.A.S. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 1, 302317.
Kang, J.-H., Irwin, D.J., Chen-Plotkin, A.S., Siderowf, A., Caspell, C., Coffey, C.S., & Shaw, L.M. (2013). Association of cerebrospinal fluid β-amyloid 1-42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurology, 70(10), 12771287.
Knight, R.G., Waal-Manning, H.J., & Spears, G.F. (1983). Some norms and reliability data for the State--Trait Anxiety Inventory and the Zung Self-Rating Depression scale. The British Journal of Clinical Psychology, 22(Pt 4), 245249.
Kudlicka, A., Clare, L., & Hindle, J.V. (2011). Executive functions in Parkinson’s disease: Systematic review and meta-analysis. Movement Disorders, 26(13), 23052315.
Lewis, S.J.G., Foltynie, T., Blackwell, A.D., Robbins, T.W., Owen, A.M., & Barker, R.A. (2005). Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. Journal of Neurology, Neurosurgery, and Psychiatry, 76(3), 343348.
Litvan, I., Aarsland, D., Adler, C.H., Goldman, J.G., Kulisevsky, J., Mollenhauer, B., & Weintraub, D. (2011). MDS task force on mild cognitive impairment in Parkinson’s disease: Critical review of PD-MCI. Movement Disorders, 26(10), 18141824.
Litvan, I., Goldman, J.G., Tröster, A.I., Schmand, B.A., Weintraub, D., Petersen, R.C., & Emre, M. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Movement Disorders, 27(3), 349356.
Magidson, J., & Vermunt, J.K. (2002). Latent class models for clustering: A comparison with K-means. Canadian Journal of Marketing Research, 20(1), 3744.
Marder, K., Leung, D., Tang, M., Bell, K., Dooneief, G., Cote, L., & Mayeux, R. (1991). Are demented patients with Parkinson’s disease accurately reflected in prevalence surveys? A survival analysis. Neurology, 41(8), 12401243.
Masyn, K.E. (2013). Latent class analysis and finite mixture modeling. The Oxford handbook of quantitative methods in psychology, (Vol. 2). New York: Oxford University Press.
Meireles, J., & Massano, J. (2012). Cognitive Impairment and Dementia in Parkinson’s Disease: Clinical Features, Diagnosis, and Management. Frontiers in Neurology, 3, 115.
Miller, G.A., & Chapman, J.P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110(1), 4048.
Mollenhauer, B., Trenkwalder, C., von Ahsen, N., Bibl, M., Steinacker, P., Brechlin, P., & Otto, M. (2006). Beta-amlyoid 1–42 and tau-protein in cerebrospinal fluid of patients with Parkinson’s disease dementia. Dementia and Geriatric Cognitive Disorders, 22(3), 200208.
Montine, T.J., Shi, M., Quinn, J.F., Peskind, E.R., Craft, S., Ginghina, C., & Zhang, J. (2010). CSF Aβ 42 and tau in Parkinson’s disease with cognitive impairment. Movement Disorders, 25(15), 26822685.
Muthén, B.O., & Muthén, L.K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism, Clinical and Experimental Research, 24(6), 882891.
Muthén, L.K., & Muthén, B.O. (2010). Mplus User’ s Guide (6th ed.). Los Angeles, CA: Muthén & Muthén.
Nalls, M.A., Keller, M.F., Hernandez, D.G., Chen, L., Stone, D.J., Singleton, A.B., & Parkinson’s Progression Marker Initiative (PPMI) investigators. (2016). Baseline genetic associations in the Parkinson’s Progression Markers Initiative (PPMI). Movement Disorders, 31(1), 7985.
Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699.
Nylund, K.L., Asparouhov, T., & Muthén, B.O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535569.
Pagano, G., Ferrara, N., Brooks, D.J., & Pavese, N. (2016). Age at onset and Parkinson disease phenotype. Neurology, 86(15), 14001407.
Parkinson Progression Marker Initiative. (2011). The Parkinson Progression Marker Initiative (PPMI). Progress in Neurobiology, 95(4), 629635.
Parnetti, L., Tiraboschi, P., Lanari, A., Peducci, M., Padiglioni, C., D’Amore, C., & Calabresi, P. (2008). Cerebrospinal fluid biomarkers in Parkinson’s Disease with dementia and dementia with lewy bodies. Biological Psychiatry, 64(10), 850855.
Pereira, J.B., Svenningsson, P., Weintraub, D., Brønnick, K., Lebedev, A., Westman, E., &Aarsland, D. (2014). Initial cognitive decline is associated with cortical thinning in early Parkinson disease. Neurology, 82(22), 20172025.
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183194.
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303308.
Post, B., Speelman, J.D., Haan, R.J., & CARPA-study group. (2008). Clinical heterogeneity in newly diagnosed Parkinson’s disease. Journal of Neurology, 255(5), 716722.
Postuma, R.B., Aarsland, D., Barone, P., Burn, D.J., Hawkes, C.H., Oertel, W., &Ziemssen, T. (2012). Identifying prodromal Parkinson’s disease: Pre-motor disorders in Parkinson’s disease. Movement Disorders, 27(5), 617626.
Reijnders, J.S., Ehrt, U., Lousberg, R., Aarsland, D., & Leentjens, A.F. (2009). The association between motor subtypes and psychopathology in Parkinson’s disease. Parkinsonism and Related Disorders, 15(5), 379382.
Scheltens, N.M.E., Galindo-Garre, F., Pijnenburg, Y.A.L., van der Vlies, A.E., Smits, L.L., Koene, T., & van der Flier, W.M. (2016). The identification of cognitive subtypes in Alzheimer’s disease dementia using latent class analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 87, 235243.
Schwab, R.S., & England, A. (1969). Projection technique for evaluating surgery in Parkinson’s disease. In F. Gillingham & M.L. Donaldson (Eds.), Third synopsium on Parkinson’s disease (pp. 152157). Edinburgh: Livingston.
Sheikh, J., & Yesavage, J. (1986). Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. In T. Brink (Ed.), Clinical gerontology: A guide to assessment and intervention. (pp. 165173). Philadelphia: The Haworth Press.
Shi, M., Bradner, J., Hancock, A.M., Chung, K.A., Quinn, J.F., Peskind, E.R., & Zhang, J. (2011). Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Annals of Neurology, 69(3), 570580.
Siepel, F.J., Brønnick, K.S., Booij, J., Ravina, B.M., Lebedev, A.V., Pereira, J.B., & Aarsland, D. (2014). Cognitive executive impairment and dopaminergic deficits in de novo Parkinson’s disease. Movement Disorders, 29(14), 18021808.
Simuni, T., Caspell-Garcia, C., Coffey, C., Lasch, S., Tanner, C., Marek, K., & PPMI Investigators. (2016). How stable are Parkinson’s disease subtypes in de novo patients: Analysis of the PPMI cohort? Parkinsonism & Related Disorders, 28, 6267.
Smith, A. (1982). Symbol digit modalities test: Manual. Los Angeles, CA: Western Psychological Services.
Stebbins, G.T., Goetz, C.G., Burn, D.J., Jankovic, J., Khoo, T.K., & Tilley, B.C. (2013). How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’s disease rating scale: Comparison with the unified Parkinson’s disease rating scale. Movement Disorders, 28(5), 668670.
Stern, Y. (2009). Cognitive Reserve. Neuropsychologia, 47(10), 20152028.
Stiasny-Kolster, K., Mayer, G., Schäfer, S., Möller, J.C., Heinzel-Gutenbrunner, M., & Oertel, W.H. (2007). The REM sleep behavior disorder screening questionnaire--A new diagnostic instrument. Movement Disorders, 22(16), 23862393.
Terrelonge, M. Jr., Marder, K.S., Weintraub, D., & Alcalay, R.N. (2016). CSF β-Amyloid 1-42 predicts progression to cognitive impairment in newly diagnosed Parkinson disease. Journal of Molecular Neuroscience: MN, 58(1), 8892.
Visser, M., Marinus, J., Stiggelbout, A.M., & Van Hilten, J.J. (2004). Assessment of autonomic dysfunction in Parkinson’s disease: The SCOPA-AUT. Movement Disorders, 19(11), 13061312.
Wechsler, D. (2008). Wechsler Adult Intelligence Scale (4th ed.). San Antonio, TX: Psychological Corporation.
Weintraub, D., Oehlberg, K.A., Katz, I.R., & Stern, M.B. (2006). Test characteristics of the 15-item geriatric depression scale and Hamilton depression rating scale in Parkinson disease. The American Journal of Geriatric Psychiatry, 14(2), 169175.
Weintraub, D., Simuni, T., Caspell-Garcia, C., Coffey, C., Lasch, S., Siderowf, A., & Sims, J.R. (2015). Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Movement Disorders, 30(7), 919927.
Zhang, J., Sokal, I., Peskind, E.R., Quinn, J.F., Jankovic, J., Kenney, C., & Montine, T.J. (2008). CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. American Journal of Clinical Pathology, 129(4), 526529.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed