Skip to main content

Motor Adaptation Deficits in Ideomotor Apraxia

  • Pratik K. Mutha (a1), Lee H. Stapp (a2), Robert L. Sainburg (a3) (a4) and Kathleen Y. Haaland (a5)

Objectives: The cardinal motor deficits seen in ideomotor limb apraxia are thought to arise from damage to internal representations for actions developed through learning and experience. However, whether apraxic patients learn to develop new representations with training is not well understood. We studied the capacity of apraxic patients for motor adaptation, a process associated with the development of a new internal representation of the relationship between movements and their sensory effects. Methods: Thirteen healthy adults and 23 patients with left hemisphere stroke (12 apraxic, 11 nonapraxic) adapted to a 30-degree visuomotor rotation. Results: While healthy and nonapraxic participants successfully adapted, apraxics did not. Rather, they showed a rapid decrease in error early but no further improvement thereafter, suggesting a deficit in the slow, but not the fast component of a dual-process model of adaptation. The magnitude of this late learning deficit was predicted by the degree of apraxia, and was correlated with the volume of damage in parietal cortex. Apraxics also demonstrated an initial after-effect similar to the other groups likely reflecting the early learning, but this after-effect was not sustained and performance returned to baseline levels more rapidly, consistent with a disrupted slow learning process. Conclusions: These findings suggest that the early phase of learning may be intact in apraxia, but this leads to the development of a fragile representation that is rapidly forgotten. The association between this deficit and left parietal damage points to a key role for this region in learning to form stable internal representations. (JINS, 2017, 23, 139–149)

Corresponding author
Correspondence and reprint requests to: Pratik K. Mutha, Indian Institute of Technology Gandhinagar, Block 5, Room 316A, Palaj, Gandhinagar, Gujarat, India – 382355. E-mail:
Hide All
Ashburner, J., & Friston, K.J. (2005). Unified segmentation. Neuroimage, 26(3), 839851.
Buxbaum, L.J. (2014). Moving the gesture engram into the 21st century. Cortex, 57, 286289. discussion 306–308.
Buxbaum, L.J., Haaland, K.Y., Hallett, M., Wheaton, L., Heilman, K.M., Rodriguez, A., & Rothi, L.J. (2008). Treatment of limb apraxia: Moving forward to improved action. American Journal of Physical Medicine & Rehabilitation, 87(2), 149161.
Buxbaum, L.J., Johnson-Frey, S.H., & Bartlett-Williams, M. (2005). Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia, 43(6), 917929.
Buxbaum, L.J., & Kalenine, S. (2010). Action knowledge, visuomotor activation, and embodiment in the two action systems. Annals of the New York Academy of Sciences, 1191, 201218.
Buxbaum, L.J., Kyle, K., Grossman, M., & Coslett, B. (2007). Left inferior parietal representations for skilled hand-object interactions: Evidence from stroke and corticobasal degeneration. Cortex, 43(3), 411423.
Canessa, N., Borgo, F., Cappa, S.F., Perani, D., Falini, A., Buccino, G., & Shallice, T. (2008). The different neural correlates of action and functional knowledge in semantic memory: An fMRI Study. Cerebral Cortex, 18(4), 740751.
Clark, M., Merians, A.S., Kothari, A., Poizner, H., Macauley, B., Rothi, L.,& Heilman, K. (1994). Spatial planning deficits in limb apraxia. Brain, 117, 10931106.
Criscimagna-Hemminger, S.E., Bastian, A.J., & Shadmehr, R. (2010). Size of error affects cerebellar contributions to motor learning. Journal of Neurophysiology, 103(4), 22752284.
Della-Maggiore, V., Malfait, N., Ostry, D.J., & Paus, T. (2004). Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics. Journal of Neuroscience, 24(44), 99719976.
Dovern, A., Fink, G.R., Saliger, J., Karbe, H., Koch, I., & Weiss, P.H. (2011). Apraxia impairs intentional retrieval of incidentally acquired motor knowledge. Journal of Neuroscience, 31(22), 81028108.
Eickhoff, S.B., Stephan, K.E., Mohlberg, H., Grefkes, C., Fink, G.R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage, 25(4), 13251335.
Fugl-Meyer, A.R., Jaasko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7(1), 1331.
Galea, J.M., Vazquez, A., Pasricha, N., Orban de Xivry, J.J., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. Cerebral Cortex, 21, 17611770.
Goldenberg, G. (1999). Matching and imitation of hand and finger postures in patients with damage in the left or right hemispheres. Neuropsychologia, 37(5), 559566.
Goldenberg, G. (2009). Apraxia and the parietal lobes. Neuropsychologia, 47(6), 14491459.
Goldenberg, G. (2013). Apraxia: The cognitive side of motor control. Oxford: Oxford University Press.
Goldenberg, G., Daumuller, M., & Hagmann, S. (2001). Assessment and therapy of complex activities of daily living in apraxia. Neuropsychological Rehabilitation, 11(2), 147169.
Haaland, K.Y., & Flaherty, D. (1984). The different types of limb apraxia errors made by patients with left vs. right hemisphere damage. The Brain and Cognition, 3(4), 370384.
Haaland, K.Y., Harrington, D.L., & Knight, R.T. (2000). Neural representations of skilled movement. Brain, 123(Pt 11), 23062313.
Hadipour-Niktarash, A., Lee, C.K., Desmond, J.E., & Shadmehr, R. (2007). Impairment of Retention But Not Acquisition of a Visuomotor Skill Through Time-Dependent Disruption of Primary Motor Cortex. Journal of Neuroscience, 27(49), 1341313419.
Hanna-Pladdy, B., Heilman, K.M., & Foundas, A.L. (2003). Ecological implications of ideomotor apraxia: Evidence from physical activities of daily living. Neurology, 60(3), 487490.
Harrington, D.L., & Haaland, K.Y. (1992). Motor sequencing with left hemisphere damage. Are some cognitive deficits specific to limb apraxia? Brain, 115(Pt 3), 857874.
Heilman, K.M., Rothi, L.J., & Valenstein, E. (1982). Two forms of ideomotor apraxia. Neurology, 32, 342346.
Heilman, K.M., & Rothi, L.J.G. (1993). Apraxia. In K.M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (pp. 141164). New York: Oxford University Press.
Heilman, K.M., Schwartz, H.D., & Geschwind, N. (1975). Defective motor learning in ideomotor apraxia. Neurology, 25(11), 10181020.
Huang, V.S., Haith, A., Mazzoni, P., & Krakauer, J.W. (2011). Rethinking motor learning and savings in adaptation paradigms: Model-free memory for successful actions combines with internal models. Neuron, 70(4), 787801.
Kertesz, A. (1982). Western aphasia battery. New York: The Psychological Corporation.
Krakauer, J.W., Mazzoni, P., Ghazizadeh, A., Ravindran, R. & Shadmehr, R. (2006). Generalization of motor learning depends on the history of prior action. PLoS Biology, 4(10): e316.
Kumar, N., & Mutha, P.K. (2016). Adaptive reliance on the most stable sensory predictions enhances perceptual feature extraction of moving stimuli. Journal of Neurophysiology, 115, 16541663.
Martin, T.A., Keating, J.G., Goodkin, H.P., Bastian, A.J., & Thach, W.T. (1996). Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain, 119(Pt 4), 11831198.
Moll, J., Oliveira-Souza, R., Passman, L.J., Cimini Cunha, F., Souze-Lima, F., & Ardreiuolo, P.A. (2000). Functional MRI correlates of real and imagined tool-use pantomimes. Neurology, 54, 13311336.
Motomura, N., Seo, T., Asaba, H., & Sakai, T. (1989). Motor learning in ideomotor apraxia. The International Journal of Neuroscience, 47(1-2), 125129.
Mozaz, M., Rothi, L.J., Anderson, J.M., Crucian, G.P., & Heilman, K.M. (2002). Postural knowledge of transitive pantomimes and intransitive gestures. Journal of the International Neuropsychological Society, 8(7), 958962.
Muhlau, M., Hermsdorfer, J., Goldenberg, G., Wohlschlager, A.M., Castrop, F., Stahl, R., & Boecker, H. (2005). Left inferior parietal dominance in gesture imitation: An fMRI study. Neuropsychologia, 43(7), 10861098.
Mutha, P.K., Sainburg, R.L., & Haaland, K.Y. (2010). Coordination deficits in ideomotor apraxia during visually targeted reaching reflect impaired visuomotor transformations. Neuropsychologia, 48(13), 38553867.
Mutha, P.K., Sainburg, R.L., & Haaland, K.Y. (2011a). Critical neural substrates for correcting unexpected trajectory errors and learning from them. Brain, 134(Pt 12), 36473661.
Mutha, P.K., Sainburg, R.L., & Haaland, K.Y. (2011b). Left parietal regions are critical for adaptive visuomotor control. Journal of Neuroscience, 31(19), 69726981.
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97113.
Pazzaglia, M., Smania, N., Corato, E., & Aglioti, S.M. (2008). Neural underpinnings of gesture discrimination in patients with limb apraxia. Journal of Neuroscience, 28(12), 30303041.
Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioral Neurology, 12(4), 191200.
Rothi, L.J.G., & Hielman, K.M. (1984). Acquisition and retention of gestures by apraxic patients. Brain and Cognition, 3, 426437.
Rothi, L.J.G., Ochipa, C., & Heilman, K.M. (1991). A Cognitive Neuropsychological Model of Limb Praxis. Cognitive Neuropsychology, 8(6), 443458.
Schluter, N.D., Rushworth, M.F., Passingham, R.E., & Mills, K.R. (1998). Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain, 121(Pt 5), 785799.
Serino, A., De Filippo, L., Casavecchia, C., Coccia, M., Shiffrar, M., & Ladavas, E. (2010). Lesions to the motor system affect action perception. Journal of Cognitive Neuroscience, 22(3), 413426.
Shadmehr, R., & Mussa-Ivaldi, F.A. (1994). Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience, 14(5 Pt 2), 32083224.
Shadmehr, R., & Mussa-Ivaldi, F.A. (2012). Biological learning and control: How the brain builds representations, predicts events and makes decisions. Cambridge, MA: MIT Press.
Shadmehr, R., Smith, M.A., & Krakauer, J.W. (2010). Error correction, sensory prediction, and adaptation in motor control. Annual Review of Neuroscience, 33, 89108.
Sirigu, A., Duhamel, J.R., & Poncet, M. (1991). The role of sensorimotor experience in object recognition. A case of multimodal agnosia. Brain, 114(Pt 6), 25552573.
Smith, M.A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biology, 4(6), e179.
Tarhan, L.Y., Watson, C.E., & Buxbaum, L.J. (2015). Shared and distinct neuroanatomic regions critical for tool-related action production and recognition: Evidence from 131 left-hemisphere stroke patients. Journal of Cognitive Neuroscience, 27(12), 24912511.
Thach, W.T., & Bastian, A.J. (2004). Role of the cerebellum in the control and adaptation of gait in health and disease. Progress in Brain Research, 143, 353366.
Toraldo, A., Reverberi, C., & Rumiati, R.I. (2001). Critical dimensions affecting imitation performance of patients with ideomotor apraxia. Cortex, 37(5), 737740.
Tranel, D., Manzel, K., Asp, E., & Kemmerer, D. (2008). Naming dynamic and static actions: Neuropsychological evidence. Journal of Physiology, Paris, 102(1-3), 8094.
Tseng, Y.W., Diedrichsen, J., Krakauer, J.W., Shadmehr, R., & Bastian, A.J. (2007). Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of Neurophysiology, 98(1), 5462.
Vingerhoets, G. (2014). Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Frontiers in Psychology, 5, 151.
Wolpert, D.M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3(Suppl), 12121217.
Wolpert, D.M., & Kowato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7-8), 13171329.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 34
Total number of PDF views: 207 *
Loading metrics...

Abstract views

Total abstract views: 468 *
Loading metrics...

* Views captured on Cambridge Core between 16th February 2017 - 18th March 2018. This data will be updated every 24 hours.