Skip to main content

Small Sets of Novel Words Are Fully Retained After 1-Week in Typically Developing Children and Down Syndrome: A Fast Mapping Study

  • Stella Sakhon (a1), Kelly Edwards (a1), Alison Luongo (a1), Melanie Murphy (a1) and Jamie Edgin (a1)...

Objectives: Down syndrome (DS) is a population with known hippocampal impairment, with studies showing that individuals with DS display difficulties in spatial navigation and remembering arbitrary bindings. Recent research has also demonstrated the importance of the hippocampus for novel word-learning. Based on these data, we aimed to determine whether individuals with DS show deficits in learning new labels and if they may benefit from encoding conditions thought to be less reliant on hippocampal function (i.e., through fast mapping). Methods: In the current study, we examined immediate, 5-min, and 1-week delayed word-learning across two learning conditions (e.g., explicit encoding vs. fast mapping). These conditions were examined across groups (twenty-six 3- to 5-year-old typically developing children and twenty-six 11- to 28-year-old individuals with DS with comparable verbal and nonverbal scores on the Kaufman Brief Intelligence Test – second edition) and in reference to sleep quality. Results: Both individuals with and without DS showed retention after a 1-week delay, and the current study found no benefit of the fast mapping condition in either group contrary to our expectations. Eye tracking data showed that preferential eye movements to target words were not present immediately but emerged after 1-week in both groups. Furthermore, sleep measures collected via actigraphy did not relate to retention in either group. Conclusions: This study presents novel data on long-term knowledge retention in reference to sleep patterns in DS and adds to a body of knowledge helping us to understand the processes of word-learning in typical and atypically developing populations. (JINS, 2018, 24, 955–965)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Small Sets of Novel Words Are Fully Retained After 1-Week in Typically Developing Children and Down Syndrome: A Fast Mapping Study
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Small Sets of Novel Words Are Fully Retained After 1-Week in Typically Developing Children and Down Syndrome: A Fast Mapping Study
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Small Sets of Novel Words Are Fully Retained After 1-Week in Typically Developing Children and Down Syndrome: A Fast Mapping Study
      Available formats
Corresponding author
Correspondence and reprint requests to: Jamie Edgin, Department of Psychology, University of Arizona, 1503 E University Blvd., Tucson, AZ 85721. E-mail:
Hide All
Ábrahám, H., Vincze, A., Veszprémi, B., Kravják, A., Gömöri, É., Kovács, G.G., & Seress, L. (2012). Impaired myelination of the human hippocampal formation in Down syndrome. International Journal of Developmental Neuroscience, 30(2), 147158.
Ashworth, A., Hill, C.M., Karmiloff-Smith, A., & Dimitriou, D. (2015). A cross-syndrome study of the differential effects of sleep on declarative memory consolidation in children with neurodevelopmental disorders. Developmental Science, 20(2), 113.
Atir-Sharon, T., Gilboa, A., Hazan, H., Koilis, E., & Manevitz, L.M. (2015). Decoding the formation of new semantics: MVPA investigation of rapid neocortical plasticity during associative encoding through Fast Mapping. Neural Plasticity, 2015, 115.
Bird, E.K.R., Chapman, R.S., & Schwartz, S.E. (2004). Fast mapping of words and story recall by individuals with Down syndrome. Journal of Speech, Language, and Hearing Research, 47(6), 12861300.
Brady, K.W., & Goodman, J.C. (2014). The type, but not the amount, of information available influences toddlers’ fast mapping and retention of new words. American Journal of Speech-Language Pathology, 23(2), 120133.
Breslin, J., Spanò, G., Bootzin, R., Anand, P., Nadel, L., & Edgin, J. (2014). Obstructive sleep apnea syndrome and cognition in Down syndrome. Developmental Medicine & Child Neurology, 56(7), 657664.
Carey, S., & Bartlett, E. (1978). Acquiring a single new word. Papers and Reports on Child Language Development, 15, 1729.
Chapman, R.S., Bird, E.K.R., & Schwartz, S.E. (1990). Fast mapping of words in event contexts by children with Down syndrome. Journal of Speech and Hearing Disorders, 55(4), 761770.
Churchill, S.S., Kieckhefer, G.M., Landis, C.A., & Ward, T.M. (2012). Sleep measurement and monitoring in children with Down syndrome: A review of the literature, 1960–2010. Sleep Medicine Reviews, 16(5), 477488.
Clark, C.A., Fernandez, F., Sakhon, S., Spanò, G., & Edgin, J.O. (2017). The medial temporal memory system in Down syndrome: Translating animal models of hippocampal compromise. Hippocampus, 27(6), 683691.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155.
Courbois, Y., Farran, E.K., Lemahieu, A., Blades, M., Mengue-Topio, H., & Sockeel, P. (2013). Wayfinding behaviour in Down syndrome: A study with virtual environments. Research in Developmental Disabilities, 34(5), 18251831.
Coutanche, M.N., & Thompson-Schill, S.L. (2014). Fast mapping rapidly integrates information into existing memory networks. Journal of Experimental Psychology: General, 143(6), 2296.
Davachi, L., & Wagner, A.D. (2002). Hippocampal contributions to episodic encoding: Insights from relational and item-based learning. Journal of Neurophysiology, 88(2), 982990.
Davis, M.H., & Gaskell, M.G. (2009). A complementary systems account of word learning: Neural and behavioural evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1536), 37733800.
Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114126.
Duff, M.C., Hengst, J., Tranel, D., & Cohen, N.J. (2006). Development of shared information in communication despite hippocampal amnesia. Nature Neuroscience, 9(1), 140.
Eichenbaum, H., & Bunsey, M. (1995). On the binding of associations in memory: Clues from studies on the role of the hippocampal region in paired-associate learning. Current Directions in Psychological Science, 4(1), 1923.
Edgin, J.O. (2013). Cognition in Down syndrome: A developmental cognitive neuroscience perspective. Wiley Interdisciplinary Reviews: Cognitive Science, 4(3), 307317.
Edgin, J.O., Tooley, U., Demara, B., Nyhuis, C., Anand, P., & Spanò, G. (2015). Sleep disturbance and expressive language development in preschool‐age children with Down syndrome. Child Development, 86(6), 19841998.
Feld, G.B., Weis, P.P., & Born, J. (2016). The limited capacity of sleep-dependent memory consolidation. Frontiers in Psychology, 7, 1368.
Fenson, L., Dale, P.S., & Reznick, S.J. (1993). MacArthur Communicative Development Inventories: User’s guide and technical manual. San Diego: Singular Publishing.
Giovanello, K.S., Schnyer, D., & Verfaellie, M. (2009). Distinct hippocampal regions make unique contributions to relational memory. Hippocampus, 19(2), 111117.
Gómez, R.L., & Edgin, J.O. (2015). Sleep as a window into early neural development: Shifts in sleep‐dependent learning effects across early childhood. Child Development Perspectives, 9(3), 183189.
Gómez, R.L., & Edgin, J.O. (2016). The extended trajectory of hippocampal development: Implications for early memory development and disorder. Developmental Cognitive Neuroscience, 18, 5769.
Greve, A., Cooper, E., & Henson, R.N. (2014). No evidence that ‘fast-mapping’ benefits novel learning in healthy older adults. Neuropsychologia, 60, 5259.
Hannula, D.E., & Ranganath, C. (2009). The eyes have it: Hippocampal activity predicts expression of memory in the eye movements. Neuron, 63(5), 592599.
Horst, J.S., & Samuelson, L.K. (2008). Fast mapping but poor retention by 24-month-old infants. Infancy, 13(2), 128157.
Jarrold, C., Baddeley, A.D., & Phillips, C. (2007). Long-term memory for verbal and visual information in Down syndrome and Williams syndrome: Performance on the Doors and People test. Cortex, 43(2), 233247.
Lavenex, P.B., Bostelmann, M., Brandner, C., Costanzo, F., Fragnière, E., Klencklen, G., & Vicari, S. (2015). Allocentric spatial learning and memory deficits in Down syndrome. Frontiers in Psychology, 6, 117.
Lejeune, J., Gautier, M., & Turpin, R. (1959). Study of somatic chromosomes from 9 mongoloid children. Comptes rendus hebdomadaires des seances de l’Academie des sciences, 248(11), 1721.
Markson, L., & Bloom, P. (1997). Evidence against a dedicated system for word learning in children. Nature, 385(6619), 813815.
Mayes, A.R., Holdstock, J.S., Isaac, C.L., Montaldi, D., Grigor, J., Gummer, A., & Gong, Q. (2004). Associative recognition in a patient with selective hippocampal lesions and relatively normal item recognition. Hippocampus, 14(6), 763784.
McClelland, J.L. (2013). Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory. Journal of Experimental Psychology: General, 142(4), 1190.
McClelland, J.L., McNaughton, B.L., & O’Reilly, R.C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419.
Meltzer, L.J., Montgomery-Downs, H.E., Insana, S.P., & Walsh, C.M. (2012). Use of actigraphy for assessment in pediatric sleep research. Sleep Medicine Reviews, 16(5), 463475.
Menghini, D., Costanzo, F., & Vicari, S. (2011). Relationship between brain and cognitive processes in Down syndrome. Behavior Genetics, 41(3), 381393.
Merhav, M., Karni, A., & Gilboa, A. (2015). Not all declarative memories are created equal: Fast mapping as a direct route to cortical declarative representations. Neuroimage, 117, 8092.
Mervis, C.B., & Robinson, B.F. (2000). Expressive vocabulary ability of toddlers with Williams syndrome or Down syndrome: A comparison. Developmental Neuropsychology, 17(1), 111126.
Milojevich, H., & Lukowski, A. (2016). Recall memory in children with Down syndrome and typically developing peers matched on developmental age. Journal of Intellectual Disability Research, 60(1), 89100.
Nadel, L. (2003). Down’s syndrome: A genetic disorder in biobehavioral perspective. Genes, Brain and Behavior, 2(3), 156166.
Pennington, B.F., Moon, J., Edgin, J., Stedron, J., & Nadel, L. (2003). The neuropsychology of Down syndrome: Evidence for hippocampal dysfunction. Child Development, 74(1), 7593.
Richmond, J., & Nelson, C.A. (2009). Relational memory during infancy: Evidence from eye tracking. Developmental Science, 12(4), 549556.
Roberts, L.V., & Richmond, J.L. (2015). Preschoolers with Down syndrome do not yet show the learning and memory impairments seen in adults with Down syndrome. Developmental science, 18(3), 404419.
Roediger, H.L. III, & Karpicke, J.D. (2006). The power of testing memory: Basic research and implications for educational practice. Perspectives on Psychological Science, 1(3), 181210.
Sadeh, A. (2011). The role and validity of actigraphy in sleep medicine: An update. Sleep Medicine Reviews, 15(4), 259267.
Sharon, T., Moscovitch, M., & Gilboa, A. (2011). Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 108(3), 11461151.
Singer Harris, N.G., Bellugi, U., Bates, E., Jones, W., & Rossen, M. (1997). Contrasting profiles of language development in children with Williams and Down syndrome. Developmental Neuropsychology, 13(3), 345370.
Smith, G.K., Kesner, R.P., & Korenberg, J.R. (2014). Dentate gyrus mediates cognitive function in the Ts65Dn/DnJ mouse model of Down syndrome. Hippocampus, 24(3), 354362.
Smith, C.N., Urgolites, Z.J., Hopkins, R.O., & Squire, L.R. (2014). Comparison of explicit and incidental learning strategies in memory-impaired patients. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 475479.
Spiegel, C., & Halberda, J. (2011). Rapid fast-mapping abilities in 2-year-olds. Journal of Experimental Child Psychology, 109(1), 132140.
Vlach, H.A., & Sandhofer, C.M. (2012). Fast mapping across time: Memory processes support children’s retention of learned words. Frontiers in Psychology, 3, 46.
Wang, J.Y., Weber, F.D., Zinke, K., Inostroza, M., & Born, J. (2017). More effective consolidation of episodic long‐term memory in children than adults—Unrelated to sleep. Child Development. doi:10.1111/cdev.12839
Warren, D.E., & Duff, M.C. (2014). Not so fast: Hippocampal amnesia slows word learning despite successful fast mapping. Hippocampus, 24(8), 920933.
Warren, D.E., Tranel, D., & Duff, M.C. (2016). Impaired acquisition of new words after left temporal lobectomy despite normal fast-mapping behavior. Neuropsychologia, 80, 165175.
Waxman, S.R., & Booth, A.E. (2000). Principles that are invoked in the acquisition of words, but not facts. Cognition, 77(2), B33B43.
Wisniewski, K.E. (1990). Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. American Journal of Medical Genetics, 37(S7), 274281. doi:10.1002/ajmg.1320370755
Yoder, P., Woynaroski, T., Fey, M., & Warren, S. (2014). Effects of dose frequency of early communication intervention in young children with and without Down syndrome. American Journal on Intellectual and Developmental Disabilities, 119(1), 1732.
Yonelinas, A.P., Hopfinger, J.B., Buonocore, M.H., Kroll, N.E.A., & Baynes, K. (2001). Hippocampal, parahippocampal and occipital-temporal contributions to associative and item recognition memory: An fMRI study. Neuroreport, 12(2), 359363.
Yonelinas, A.P. (2013). The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behavioural Brain Research, 254, 3444.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the International Neuropsychological Society
  • ISSN: 1355-6177
  • EISSN: 1469-7661
  • URL: /core/journals/journal-of-the-international-neuropsychological-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed