Skip to main content
×
Home
    • Aa
    • Aa

BENFORD'S LAW FOR THE $3x+1$ FUNCTION

  • JEFFREY C. LAGARIAS (a1) and K. SOUNDARARAJAN (a2)
Abstract

Benford's law (to base $B$) for an infinite sequence $\{x_k: k \ge 1\}$ of positive quantities $x_k$ is the assertion that $\{ \log_B x_k : k \ge 1\}$ is uniformly distributed $(\bmod\ 1)$. The $3x+1$ function $T(n)$ is given by $T(n)=(3n+1)/{2}$ if $n$ is odd, and $T(n)= n/2$ if $n$ is even. This paper studies the initial iterates $x_k= T^{(k)}(x_0)$ for $1 \le k \le N$ of the $3x+1$ function, where $N$ is fixed. It shows that for most initial values $x_0$, such sequences approximately satisfy Benford's law, in the sense that the discrepancy of the finite sequence $\{\log_B x_k: 1 \le k \le N \}$ is small.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the London Mathematical Society
  • ISSN: 0024-6107
  • EISSN: 1469-7750
  • URL: /core/journals/journal-of-the-london-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 53 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.