Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T10:57:12.445Z Has data issue: false hasContentIssue false

Comparison of bacterial communities associated with Xestospongia testudinaria, sediment and seawater in a Singaporean coral reef ecosystem

Published online by Cambridge University Press:  02 April 2018

A.C.C. Pires
Affiliation:
Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
D.F.R. Cleary
Affiliation:
Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
A.R.M. Polónia
Affiliation:
Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
S.C. Lim
Affiliation:
Tropical Marine Science Institute, National University of Singapore, Singapore
N.J. De Voogd
Affiliation:
Naturalis Biodiversity Center, Leiden, the Netherlands
V. Oliveira
Affiliation:
Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
N.C.M. Gomes*
Affiliation:
Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
*
Correspondence should be addressed to: N. C. M. Gomes, CESAM – Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal email: gomesncm@ua.pt

Abstract

Despite alterations caused by anthropogenic activities in Singaporean coral reefs, the sponge communities are quite diverse and Xestospongia testudinaria is one of the most common sponge species. In the present study, we used 16S rRNA gene barcoded pyrosequencing to characterize and compare bacterial communities from different biotopes (sponge, seawater and sediment) and to identify dominant bacterial symbionts of X. testudinaria in a Singaporean coral reef ecosystem. Our results showed that biotope appears to affect the richness, composition and abundance of bacterial communities. Proteobacteria was the most abundant phylum in sediment and seawater whilst Chloroflexi was more abundant in X. testudinaria. Members of the order Caldilineales (fermentation of organic substrates), Chromatiales (purple sulphur bacteria), Rhodospirillales (purple non-sulphur bacteria) and Syntrophobacterales (sulphate-reducing bacteria) were relatively more abundant in X. testudinaria samples.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angly, F.E., Heath, C., Morgan, T.C., Tonin, H., Rich, V., Schaffelke, B., Bourne, D.G. and Tyson, G.W. (2016) Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events. PeerJ 4, e1511.10.7717/peerj.1511Google Scholar
Baldani, J.I., Videira, S.S., Teixeira, K.R.S., Reis, V.M., Oliveira, A.L.M., Schwab, S., Souza, E.M., Pedraza, R.O., Baldani, V.L.D. and Hartmann, A. (2014) 22. The Family Rhodospirillaceae. In Rosenberg, E. (editor-in-chief), DeLong, E.F., Lory, S., Stackendt, E. and Thompson, F. (eds) The Prokaryotes – Alphaproteobacteria and Betaproteobacteria, 4th edition. New York, NY: Springer-Verlag, pp. 533618.10.1007/978-3-642-30197-1_300Google Scholar
Bayer, K., Moitinho-Silva, L., Brümmer, F., Cannistraci, C.V., Ravasi, T. and Hentschel, U. (2014) GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiology Ecology 90, 832843.10.1111/1574-6941.12441Google Scholar
Becking, L.E., Cleary, D.F.R., de Voogd, N.J., Renema, W., de Beer, M., van Soest, R.W.M. and Hoeksema, B.W. (2006) Beta diversity of tropical marine benthic assemblages in the Spermonde Archipelago, Indonesia. Marine Ecology 27, 7688.10.1111/j.1439-0485.2005.00051.xGoogle Scholar
Bowen, J.L., Morrison, H.G., Hobbie, J.E. and Sogin, M.L. (2012) Salt marsh sediment diversity: a test of the variability of the rare biosphere among environmental replicates. ISME Journal 6, 20142023.10.1038/ismej.2012.47Google Scholar
Brock, T.D., Madigen, M.T., Martinko, J.M. and Parker, J. (1984) Biology of microbiology. London: Prentice Hall.Google Scholar
Brück, W.M., Brück, T.B., Self, W.T., Reed, J.K., Nitecki, S.S. and McCarthy, P.J. (2010) Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida. ISME Journal 4, 686699.10.1038/ismej.2009.149Google Scholar
Campbell, A.G., Schwientek, P., Vishnivetskaya, T., Woyke, T., Levy, S., Beall, C.J., Griffen, A., Leys, E. and Podar, M. (2014) Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota. Environmental Microbiology 16, 26352643.10.1111/1462-2920.12461Google Scholar
Campbell, A.M., Fleisher, J., Sinigalliano, C., White, J.R. and Lopez, J.V. (2015) Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida. Microbiology Open 4, 390408.10.1002/mbo3.245Google Scholar
Capone, D.G., Dunham, S.E., Horrigan, S.G. and Duguay, L.E. (1992) Microbial nitrogen transformations in unconsolidated coral reef sediments. Marine Ecology Progress Series 80, 7588.10.3354/meps080075Google Scholar
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Tumbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J. and Knight, R. (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335336.10.1038/nmeth.f.303Google Scholar
Cleary, D.F.R. (2003) An examination of scale of assessment, logging and ENSO-induced fires on butterfly diversity in Borneo. Oecologia 135, 313321.10.1007/s00442-003-1188-5Google Scholar
Cleary, D.F.R., Becking, L.E., de Voogd, N.J., Pires, A.C.C., Polónia, A.R.M., Egas, C. and Gomes, N.C.M. (2013) Habitat- and host-related variation in sponge bacterial symbiont communities in Indonesian waters. FEMS Microbiology Ecology 85, 465482.10.1111/1574-6941.12135Google Scholar
Cleary, D.F.R., Coelho, F.J.R.C., Oliveira, V., Gomes, N.C.M. and Polónia, A.R.M. (2017) Sediment depth and habitat as predictors of the diversity and composition of sediment bacterial communities in an inter-tidal estuarine environment. Marine Ecology 38, e12411. doi: 10.1111/maec.12411Google Scholar
Cleary, D.F.R., de Voogd, N.J., Polónia, A.R.M., Freitas, R. and Gomes, N.C.M. (2015) Composition and predictive functional analysis of bacterial communities in seawater, sediment and sponges in the Spermonde Archipelago, Indonesia. Microbial Ecology 70, 889903.10.1007/s00248-015-0632-5Google Scholar
Cleary, D.F.R. and Genner, M.J. (2004) Changes in rain forest butterfly diversity following major ENSO-induced fires in Borneo. Global Ecology and Biogeography 13, 129140.10.1111/j.1466-882X.2004.00074.xGoogle Scholar
Cleary, D.F.R., Polónia, A.R.M., Becking, L.E., de Voogd, N.J., Purwanto, Gomes H. and Gomes, N.C.M. (2018) Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system, Indonesia. Marine Biodiversity 113. doi:10.1007/s12526-017-0697-0.Google Scholar
Cleary, D.F.R., Smalla, K., Mendonça-Hagler, L.C.S. and Gomes, N.C.M. (2012) Assessment of variation in bacterial composition among microhabitats in a mangrove environment using DGGE fingerprints and barcoded pyrosequencing. PLoS ONE 7, e29380.10.1371/journal.pone.0029380Google Scholar
Colman, A.S. (2015) Sponge symbionts and the marine P cycle. Proceedings of the National Academy of Sciences USA 112, 41914192.10.1073/pnas.1502763112Google Scholar
Corlett, R.T. (1992) The ecological transformation of Singapore, 1819–1990. Journal of Biogeography 19, 411420.10.2307/2845569Google Scholar
Costa, R., Keller-Costa, T., Gomes, N.C.M., da Rocha, U.N., van Overbeek, L. and van Elsas, J.D. (2013) Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis. Microbial Ecology 65, 232244.10.1007/s00248-012-0102-2Google Scholar
de Goeij, J.M., van den Berg, H., van Oostveen, M.M., Epping, E.H.G. and van Duyl, F.C. (2008) Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Marine Ecology Progress Series 357, 139151.10.3354/meps07403Google Scholar
de Goeij, J.M. and van Duyl, F.C. (2007) Coral cavities are sinks of dissolved organic carbon (DOC). Limnology and Oceanography 52, 26082617.10.4319/lo.2007.52.6.2608Google Scholar
de Goeij, J.M., van Oevelen, D., Vermeij, M.J.A., Osinga, R., Middelburg, J.J., Goeij, A.F.P.M. and Admiraal, W. (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342, 108110.10.1126/science.1241981Google Scholar
Della Sala, G., Hochmuth, T., Teta, R., Costantino, V. and Mangoni, A. (2014) Polyketide synthases in the microbiome of the marine sponge Plakortis halichondrioides: a metagenomic update. Marine Drugs 12, 54255440.10.3390/md12115425Google Scholar
de Voogd, N.J., Becking, L.E. and Cleary, D.F.R. (2009) Sponge community composition in the Derawan Islands, NE Kalimantan, Indonesia. Marine Ecology Progress Series 396, 169180.10.3354/meps08349Google Scholar
de Voogd, N.J. and Cleary, D.F.R. (2009) Variation in sponge composition among Singapore reefs. Raffles Bulletin of Zoology 22, 5967.Google Scholar
de Voogd, N.J., Cleary, D.R.F., Polónia, A.R.M. and Gomes, N.C.M. (2015) Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the Thousand Islands reef complex, West-Java, Indonesia. FEMS Microbiology Ecology 91, 112.10.1093/femsec/fiv019Google Scholar
Diaz, M.C. and Rützler, K. (2001) Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69, 535546.Google Scholar
Dunbar, J., Barns, S.M., Ticknor, L.O. and Kuske, C.R. (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Applied and Environmental Microbiology 68, 30353045.10.1128/AEM.68.6.3035-3045.2002Google Scholar
Edgar, R.C. (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996998.10.1038/nmeth.2604Google Scholar
Edgar, R.C., Haas, B., Clemente, J., Quince, C. and Knight, R. (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 21942200.10.1093/bioinformatics/btr381Google Scholar
Fan, L., Reynolds, D., Liu, M., Stark, M., Kjelleberg, S., Webster, N.S. and Thomas, T. (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proceedings of the National Academy of Sciences USA 109, E1878E1887.10.1073/pnas.1203287109Google Scholar
Fan, Z.Y., Li, X.R., Mao, D.P., Zhu, G.F., Wang, S.Y. and Quan, Z.X. (2009) Could nested PCR be applicable for the study of microbial diversity? World Journal of Microbiology and Biotechnology 25, 14471452.10.1007/s11274-009-0033-3Google Scholar
Fiore, C.L., Baker, D.M. and Lesser, M.P. (2013) Nitrogen biogeochemistry in the Caribbean sponge Xestospongia muta: a source or sink of dissolved inorganic nitrogen. PLoS ONE 8, e72961.10.1371/journal.pone.0072961Google Scholar
Frank, A.H., Garcia, J.A.L., Herndl, G.J. and Reinthaler, T. (2016) Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water. Environmental Microbiology 18, 20522063.10.1111/1462-2920.13237Google Scholar
Garrity, G., Bell, J.A. and Lilburn, T. (2005) Order V. Thiotrichales ord. nov. In Brenner, D.J., Krieg, N.R., Staley, N.R. and Garrity, G.M. (eds) Bergey's manual of systematic bacteriology, 2nd edition, Volume 2. The Proteobacteria, part B. The Gammaproteobacteria. New York, NY: Springer, pp. 131180.10.1007/0-387-28022-7_5Google Scholar
Ghai, R., Mizuno, C.M., Picazo, A., Camacho, A. and Rodriguez-Valera, F. (2013) Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Scientific Reports 3, 2471.10.1038/srep02471Google Scholar
Gliesche, C., Fesefeldt, A. and Hirsch, P. (2005) Genus I. Hyphomicrobium Stutzer and Hartleb 1898, 76AL. In Brenner, D.J., Krieg, N.R., Staley, J.T. and Garrity, G.M. (eds) Bergey's manual of systematic bacteriology, 2nd edition, Volume 2. The Proteobacteria, part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. New York, NY: Springer, pp. 476494.Google Scholar
Gomes, N.C.M., Cleary, D.F.R., Pinto, F.N., Egas, C., Almeida, A., Cunha, A., Mendonca-Hagler, L.C.S. and Smalla, K. (2010) Taking root: enduring effect of rhizosphere bacterial colonization in mangroves. PLoS ONE 5, e14065.Google Scholar
Gomes, N.C.M., Heuer, H., Schönfeld, J., Costa, R.S., Mendonça-Hagler, L.C.S. and Smalla, K. (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232, 167180.10.1023/A:1010350406708Google Scholar
Hardoim, C.C.P., Esteves, A.I.S., Pires, F.R., Gonçalves, J.M.S., Cox, C.J., Xavier, J.R. and Costa, R. (2012) Phylogenetically and spatially close marine sponges harbour divergent bacterial communities. PLoS ONE 7, e53029.Google Scholar
Hentschel, U., Fieseler, L., Wehrl, M., Gernert, C., Steinert, M., Hacker, J. and Horn, M. (2003) Microbial diversity of marine sponges. Progress in Molecular and Subcellular Biology 37, 5988.Google Scholar
Hentschel, U., Hopke, J., Horn, M., Friedrich, A.B., Wagner, M., Hacker, J. and Moore, B.S. (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Applied and Environmental Microbiology 68, 44314440.Google Scholar
Imhoff, J.F. (2005) Order I. Chromatiales ord. nov. In Brenner, D.J., Krieg, N.R., Staley, N.R. and Garrity, G.M. (eds) Bergey's manual of systematic bacteriology, 2nd edition, Volume 2. The Proteobacteria, part B. The Gammaproteobacteria. New York, NY: Springer, pp. 13.Google Scholar
Kuever, J. (2014) 21. The Family Syntrophobacteraceae. In Rosenberg, E. (editor-in-chief), DeLong, E.F., Lory, S., Stackendt, E. and Thompson, F. (eds) The Prokaryotes – Deltaproteobacteria and Epsilonpoteobacteria, 4th edition. New York, NY: Springer-Verlag, pp. 289298.10.1007/978-3-642-39044-9_268Google Scholar
Lee, O.O., Wang, Y., Yang, J., Lafi, F.F., Al-Suwailem, A. and Qian, P.Y. (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME Journal 5, 650664.Google Scholar
Legendre, P. and Gallagher, E. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271280.Google Scholar
Lim, S.-C., de Voogd, N.J. and Tan, K.-S. (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae). Contributions to Zoology 81, 5571.Google Scholar
Luo, C., Tsementzi, D., Kyrpides, N., Read, T. and Konstantinidis, K.T. (2012) Direct comparisons of Illumina vs Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS ONE 7, e30087.10.1371/journal.pone.0030087Google Scholar
Mizuno, C.M., Rodriguez-Valera, F. and Ghai, R. (2015) Genomes of planktonic Acidimicrobiales: widening horizons for marine actinobacteria by metagenomics. mBio 6, e0208314.10.1128/mBio.02083-14Google Scholar
Montalvo, N.F., Davis, J., Vicente, J., Pittiglio, R., Ravel, J. and Hill, R.T. (2014) Integration of culture-based and molecular analysis of a complex sponge-associated bacterial community. PLoS ONE 9, e90517.Google Scholar
Montalvo, N.F. and Hill, R.T. (2011) Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Applied and Environmental Microbiology 77, 72077216.10.1128/AEM.05285-11Google Scholar
Morris, R.M., Rappé, M.S., Urbach, E., Connon, S.A. and Giovannoni, S.J. (2004) Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Applied and Environmental Microbiology 70, 28362842.Google Scholar
Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G.L., Solymos, P., Stevens, M.H.H. and Wagner, H. (2009) vegan: Community ecology package. R package version, 1: 15–2.Google Scholar
Oren, A. and Xu, X.-W. (2014) The Family Hyphomicrobiaceae. In Rosenberg, E. (editor-in-chief), DeLong, E.F., Lory, S., Stackendt, E. and Thompson, F. (eds) The Prokaryotes – Alphaproteobacteria and Betaproteobacteria, 4th edition. New York, NY: Springer-Verlag, pp. 247281.Google Scholar
Pita, L., López-Legentil, S. and Erwin, P.M. (2013) Biogeography and host fidelity of bacterial communities in Ircinia spp. from the Bahamas. Microbial Ecology 266, 437447.Google Scholar
Pollock, F.J., Wilson, B., Johnson, W.R., Morris, P.J., Willis, B.L. and Bourne, D.G. (2010) Phylogeny of the coral pathogen Vibrio coralliilyticus. Environmental Microbiology Reports 2, 172178.Google Scholar
Polónia, A.R.M., Cleary, D.F.R., Freitas, R., de Voogd, N.J. and Gomes, N.C.M. (2015) The putative functional ecology and distribution of archaeal communities in sponges, sediment and seawater in a coral reef environment. Molecular Ecology 24, 409423.Google Scholar
Polónia, A.R.M., Cleary, D.R.F., Duarte, L.N., de Voogd, N.J. and Gomes, N.C.M. (2014) Composition of Archaea in seawater, sediment and sponges in the Kepulauan Seribu reef system, Indonesia. Microbial Ecology 67, 553567.10.1007/s00248-013-0365-2Google Scholar
Proctor, L.M. (1997) Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquatic Microbial Ecology 12, 105113.Google Scholar
R Core Team (2013) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/.Google Scholar
Ribes, M., Jimenez, E., Yahel, G., Lopez-Sendino, P., Diez, B., Massana, R., Sharp, J.H. and Coma, R. (2012) Functional convergence of microbes associated with temperate marine sponges. Environmental Microbiology 14, 12241239.Google Scholar
Schmitt, S., Deines, P., Behnam, F., Wagner, M. and Taylor, M.W. (2011) Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiology Ecology 78, 497510.Google Scholar
Siegl, A. and Hentschel, U. (2010) PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification. Environmental Microbiology Reports 2, 507513.Google Scholar
Sipkema, D., Franssen, M.C.R., Osinga, R., Tramper, J. and Wijffels, R.H. (2005) Marine sponges as pharmacy. Marine BioTechnology 7, 142162.10.1007/s10126-004-0405-5Google Scholar
Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M. and Herndl, G.J. (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proceedings of the National Academy of Sciences USA 103, 1211512120.Google Scholar
Thomas, T., Moitinho-Silva, L., Lurgi, M., Björk, J.R., Easson, C., Astudillo-García, C., Olson, J.B., Erwin, P.M., López-Legentil, S., Luter, H., Chaves-Fonnegra, A., Costa, R., Schupp, P.J., Steindler, L., Erpenbeck, D., Gilbert, J., Knight, R., Ackermann, G., Lopez, J.V., Taylor, M.W., Thacker, R.W., Montoya, J.M., Hentsche, U. and Webster, N.S. (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nature Communications 7, 11870.Google Scholar
Thrash, J.C., Seitz, K.W., Baker, B.J., Temperton, B., Gillies, L.E., Rabalais, N.N., Henrissat, B. and Mason, O.U. (2016) Decoding bacterioplankton metabolism in the northern Gulf of Mexico Dead Zone. bioRxiv 095471.Google Scholar
Vaz-Moreira, I., Egas, C., Nunes, O.C. and Manaia, C.M. (2011) Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie Van Leeuwenhoek 100, 245257.10.1007/s10482-011-9583-0Google Scholar
Vogel, G. (2008) The inner lives of sponges. Science 320, 10281030.Google Scholar
Wang, Q., Garrity, G.M., Tiedje, J.M. and Cole, J.R. (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73, 52615267.10.1128/AEM.00062-07Google Scholar
Wang, W. and Wu, Y. (2017) Combination of zero-valent iron and anaerobic microorganisms immobilized in luffa sponge for degrading 1,1,1-trichloroethane and the relevant microbial community analysis. Applied Microbiology and Biotechnology 101, 783796.10.1007/s00253-016-7933-6Google Scholar
Wilkinson, C.R. (1983) Net primary productivity in coral reef sponges. Science 219, 410412.Google Scholar
Wilkinson, C.R. (1987) Interocean differences in size and nutrition of coral reef sponge populations. Science 236, 16541657.Google Scholar
Wilkinson, C.R. and Cheshire, A.C. (1990) Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: evidence for higher productivity in the Caribbean. Marine Ecology Progress Series 67, 285294.Google Scholar
Wilson, M.C., Mori, T., Rückert, C., Uria, A.R., Helf, M.J., Takada, K., Gernert, C., Steffens, U.A.E., Heycke, N., Schmitt, S., Rinke, C., Helfrich, E.J.N., Brachmann, A.O., Gurgui, C., Wakimoto, T., Kracht, M., Crüsemann, M., Hentschel, U., Abe, I., Matsunaga, S., Kalinowski, J., Takeyama, H. and Piel, J. (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 5862.10.1038/nature12959Google Scholar
Xia, Y., Wang, Y., Wang, Y., Chin, F.Y.L. and Zhang, T. (2016) Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation. Biotechnology for Biofuels 9, 111.Google Scholar
Yamada, T., Sekiguchi, Y., Hanada, S., Imachi, H., Ohashi, A., Harada, H. and Kamagata, Y. (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. International Journal of Systematic and Evolutionary Microbiology 56, 13311340.Google Scholar
Yu, Y., Lee, C., Kim, J. and Hwang, S. (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering 89, 670679.Google Scholar
Zhang, Z., Schwartz, S., Wagner, L. and Miller, W. (2000) A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7, 203214.Google Scholar
Supplementary material: File

Pires et al. supplementary material

Table S1 and Figure S1

Download Pires et al. supplementary material(File)
File 297.1 KB