Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-xnv6z Total loading time: 0.283 Render date: 2022-11-28T03:20:13.735Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Geographic variation in acid–base balance of the intertidal crustacean Cyclograpsus cinereus (Decapoda, Grapsidae) during air exposure

Published online by Cambridge University Press:  10 September 2013

Marcelo Lagos
Affiliation:
Departamento de Ecología Costera, Facultad de Ciencias, Universidad Católica Ssma, Concepción, Alonso de Ribera 2850, Concepción, Chile
Cristián W. Cáceres
Affiliation:
Departamento de Ecología Costera, Facultad de Ciencias, Universidad Católica Ssma, Concepción, Alonso de Ribera 2850, Concepción, Chile
Marco A. Lardies*
Affiliation:
Departamento de Ciencias, Facultad de Artes Liberales & Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Diagonal Las Torres 2640, Peñalolen, Santiago, Chile
*
Correspondence should be addressed to: M.A. Lardies, Departamento de Ciencias, Facultad de Artes Liberales & Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Diagonal Las Torres 2640, Peñalolen, Santiago, Chile email: marco.lardies@uai.cl.

Abstract

In intertidal poikilotherms with wide geographic distribution, physiological variations are ubiquitous, due to phenotypic plasticity and/or individual geographic variation. Using the grapsid crab, Cyclograpsus cinereus as a study model, acclimatization differences in respiratory physiology were evaluated among populations along the Chilean coast, covering a latitudinal gradient of about 2000 km. This species inhabits the supratidal zones and, therefore, is subject to constant immersion and emersion periods, producing physiological acidification due to CO2 retention, mainly in the branchial cavity. Individuals of six populations were collected along the coastline of Chile and were exposed to air for different time periods in the laboratory. The following parameters were measured: pH, Ca2+, Cl and haemolymphatic lactate dehydrogenase (LDH) enzyme activity. Populations from lower latitudes were significantly different from those from central and southern Chile, with a higher haemolymphatic pH variation and higher Ca2+ level, along with lower levels of Cl and LDH enzyme activity. This indicates that the populations from lower latitudes, which are subject to higher air temperatures during emersion, have a higher homeostatic capacity during emersion periods than those of intermediate and higher latitudes. This response seems to be determined by genetic bases due to adaptation to the local environment.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Astete-Espinoza, L.P. and Cáceres, C.W. (2000) Efecto del parasitismo del isopodo bopirido Ionella agassizi (Isopoda: Epicaridea) (Bornier, 1900) sobre la fisiología nutricional del nape Neotrypaea uncinata (Edwards, 1837) (Decapoda: Thalassinidea). Revista Chilena de Historia Natural 73, 243252.CrossRefGoogle Scholar
Bahamonde, N. and Lopez, M.T. (1969) Cyclograpsus cinereus Dana, en biocenosis supramareales de Chile (Crustacea Decapoda, Brachyura, Grapsidae). Boletín del Museo Nacional de Historia Natural 29, 165204.Google Scholar
Camus, P. (2001) Marine biogeography of continental Chile. Revista Chilena de Historia Natural 74, 587617.CrossRefGoogle Scholar
Chen, J.C. and Chia, P.G. (1997) Osmotic and ionic concentrations of Scylla serrata (Forskål) subjected to different salinity levels. Comparative and Biochemical Physiology A 117, 239244.CrossRefGoogle Scholar
Crawford, D.L. and Powers, D.A. (1992) Evolutionary adaptation to different thermal environments via transcriptional regulation. Molecular Biology and Evolution 9, 806813.Google ScholarPubMed
Fabry, V., Seibel, B., Feely, R. and Orr, J. (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65, 414432.CrossRefGoogle Scholar
Farrelly, C.A. and Greenaway, P. (1994) Gas exchange through the lungs and gills in air breathing crabs. Journal of Experimental Biology 187, 113130.Google ScholarPubMed
Fischer, K. and Fiedler, K. (2002) Reaction norms for age and size at maturity in response to temperature: a test of the compound interest hypothesis. Evolutionary Ecology 16, 333349.CrossRefGoogle Scholar
Food and Agriculture Organization (1985) Datos agroclimatológicos: América Latina y El Caribe. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
Gattuso, J.P. and Hansson, L. (2011) Ocean acidification. Oxford: Oxford University Press.Google Scholar
Greenaway, P. (2003) Terrestrial adaptation in the Anomura (Crustacea: Decapoda). Memoirs of the National Museum Victoria 60, 1326.CrossRefGoogle Scholar
Gunthorpe, M.E., Sikes, C.S. and Wheeler, A.P. (1990) Promotion and inhibition of calcium carbonate crystallization in vitro by matrix protein from Blue Crab exoskeleton. Biological Bulletin. Marine Biological and Laboratory, Woods Hole 179, 191200.CrossRefGoogle ScholarPubMed
Halperin, J., Ansaldo, M., Pellerano, G.N. and Luquet, C.M. (2000) Bimodal breathing in the estuarine crab Chasmagnathus granulatus Dana 1851, physiological and morfological studies. Comparative and Biochemical Physiology B 126, 341349.CrossRefGoogle Scholar
Henry, R.P. (1994) Morphological, behavioral and physiological characterization of bimodal breathing crustaceans. American Zoologist 34, 205215.CrossRefGoogle Scholar
Henry, R.P. (2001) Environmentally mediated carbonic anhydrase induction in the gills of euryhaline crustaceans. Journal of Experimental Biology 204, 9911002.Google ScholarPubMed
Henry, R.P. and Wheatly, M.G. (1992) Interaction of respiration, ion regulation, and acid–base balance in the everyday life of aquatic crustaceans. American Zoologist 32, 407416.CrossRefGoogle Scholar
Henry, R.P., Kormanik, G.A., Smatresk, N.J. and Cameron, J.N. (1981) The role of CaCo3 dissolution as a source of HCO3 for the buffering of hypercapnic acidosis in aquatic and terrestrial decapod crustaceans. Journal of Experimental Biology 94, 269274.Google Scholar
Hochachka, P.W. and Somero, G.N. (2002) Biochemical adaptation. Oxford: Oxford University Press.Google Scholar
Hofmann, G.E. and Somero, G.N. (1995) Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. Journal of Experimental Biology 198, 15091518.Google ScholarPubMed
Innes, A.J., Forster, M.E., Jones, M.B., Marsden, I.D. and Taylor, H.H. (1986) Bimodal respiration, water balance and acid–base regulation in a high-shore crab, Cyclograpsus lavauxi. Journal of Experimental Marine Biology and Ecology 100, 127145.CrossRefGoogle Scholar
Jensen, G.C. and Armstrong, D.A. (1991) Intertidal zonation among congeners: factors regulating distribution of Porcellan crabs Petrolisthes sp. (Anomura: Porcellanidae). Marine Ecology Progress Series 73, 4760.CrossRefGoogle Scholar
Klin, Z. (1970) Empfehlungen der Deutschen Gesellschaft für Klinische, Chemie. Zeitschrift für klinische Chemie und klinische Biochemie 8, 658659.Google Scholar
Lagos, M.E. and Cáceres, C.W. (2008) Como afecta la exposición aérea el equilibrio ácido base de organismos móviles del intermareal: Petrolisthes laevigatus (Guérin, 1835) (Decapoda: Porcellanidae) como caso de estudio. Revista de Biología Marina y Oceanografía 43, 591598.CrossRefGoogle Scholar
Lagos, M.E., Muñoz, J.L., Contreras, D.A. and Cáceres, C.W. (2011) Microhabitat segregation and physiological differences in two species of intertidal porcellanid crabs (genus Petrolisthes) on the southern coast of Chile. Scientia Marina 75, 273278.CrossRefGoogle Scholar
Laptikhovsky, V. (2006) Latitudinal and bathymetric trends in egg size variation: a new look at Thorson's and Rass's rules. Marine Ecology 27, 714.CrossRefGoogle Scholar
Lardies, M.A. and Bozinovic, F. (2006) Geographic covariation between metabolic rate and life-history traits. Evolutionary Ecology Research 8, 455470.Google Scholar
Lardies, M.A. and Bozinovic, F. (2008) Genetic variation for plasticity in physiological and life-history traits among populations of an invasive species, the terrestrial isopod Porcellio laevis. Evolutionary Ecology Research 10, 116.Google Scholar
Lardies, M.A. and Castilla, J.C. (2001) Latitudinal variation in the reproductive biology of the commensal crab Pinnaxodes chilensis (Decapoda: Pinnotheridae) along the Chilean coast. Marine Biology 139, 11251133.Google Scholar
Lardies, M.A., Bacigalupe, L.D. and Arias, M.B. (2010) Phenotypic covariance matrix in life history traits along a latitudinal gradient: a study case in an endemic crab from the coast of Chile. Marine Ecology Progress Series 412, 179187.CrossRefGoogle Scholar
Lardies, M.A., Muñoz, J.L., Paschke, K.A. and Bozinovic, F. (2011) Geographic variation in metabolism in bimodal air–water breathing crab of Pacific coast of Chile: an evolutionary perspective. Marine Ecology: an Evolutionary Perspective 32, 4251.CrossRefGoogle Scholar
Luquet, C. and Ansaldo, M. (1997) Acid–base balance and ionic regulation during emersion in the estuarine intertidal crab Chasmagnathus granulata Dana (Decapoda Grapsidae). Comparative and Biochemical Physiology A 117, 407410.CrossRefGoogle Scholar
Mizera, F. and Meszéna, G. (2003) Spatial niche packing, character displacement and adaptative selection along an environmental gradient. Evolutionary Ecology Research 5, 363382.Google Scholar
Monaco, C.J., Brokordt, K. and Gaymer, C.F. (2010) Latitudinal thermal gradient effect on the cost of living of the intertidal porcelain crab Petrolisthes granulosus. Aquatic Biology 9, 2333.CrossRefGoogle Scholar
Montecinos, L.A., Cisterna, J.A., Cáceres, C.W. and Saldías, G.S. (2009) Equilibrio ácido-base durante la exposición aérea en el molusco bivalvo Perumytilus purpuratus (Lamarck, 1819) (Bivalvia: Mytilidae). Revista de Biología Marina y Oceanografía 44, 181187.CrossRefGoogle Scholar
Moorehead, W. and Biggs, H. (1974) 2-Amino-2-methyl-1-propanol as the alkalizing agent in an improved continous-flow cresolphthalein complexo procedure for calcium in serum. Clinical Chemistry 20, 14581480.Google Scholar
Moriyasu, M. and Mallet, P. (1986) Source molt stages of the snow crab Chionoecetes opilio by observation of morphogenesis of setae on the maxilla. Journal of Crustacean Biology 6, 709718.CrossRefGoogle Scholar
Morris, S. (2002) The ecophysiology of air-breathing in crabs with special reference to Gecarcoidea natalis. Comparative and Biochemical Physiology B 131, 559570.CrossRefGoogle ScholarPubMed
Morris, S. and Adamezwska, A.M. (1996) Respiratory, acid–base and ion status during voluntary immersion of the air-breathing crab Cardisoma carnifex assessed in situ. Journal of Experimental Marine Biology and Ecology 206, 149164.CrossRefGoogle Scholar
O'Mahoney, P. and Full, R. (1984) Respiration of crabs in air and water. Comparative and Biochemical Physiology A 79, 275282.CrossRefGoogle Scholar
Osovitz, C.J. and Hofmann, G.E. (2007) Marine macrophysiology: studying physiological variation across large spatial scales in marine systems. Comparative and Biochemical Physiology A 147, 821827.CrossRefGoogle ScholarPubMed
Pane, E.F. and Barry, J.P. (2007) Extracellular acid–base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Marine Ecology Progress Series 334, 19.CrossRefGoogle Scholar
Paynter, K., Dimichele, L. and Powers, D. (1991) Metabolic implications of Ldh-B genotype during early development in Fundulus heteroclitus. Journal of Experimental Biology 257, 2433.Google Scholar
Pellegrino, C. (1984) The role of desiccation pressures and surface area/volume relationships on seasonal zonation and size of four intertidal decapod crustacea from New Zealand: implication for adaptation to land. Crustaceana 47, 251268.CrossRefGoogle Scholar
Pörtner, H.O., Bennett, A.F., Bozinovic, F., Clarke, A., Lardies, M.A., Lenski, R.E., Lucassen, M., Pelster, B., Shiemer, F. and Stillman, J.H. (2006) Trade-offs in thermal adaptation: the need for a molecular to ecological integration. Physiological and Biochemical Zoology 79, 295313.CrossRefGoogle ScholarPubMed
Randall, D., Burggren, W. and French, K. (2001) Eckert, animal physiology: mechanisms and adaptations. New York; W.H. Freeman.Google Scholar
Ricklefs, R.E. and Wikelski, M. (2002) The physiology/life history nexus. Trends in Ecology and Evolution 17, 462468.CrossRefGoogle Scholar
Schales, O. and Schales, S. (1941) A simple and accurate method for the determination of chloride in biological fluids. Journal of Biological Chemistry 140, 879.Google Scholar
Schulte, M.P., Glémet, H.C., Fiebig, A.A. and Powers, D.A. (2000) Adaptive variation in lactate dehydrogenase-B gene expression: role of a stress-responsive regulatory element. Proceedings of the National Academy of Sciences of the United States of America 97, 65976602.CrossRefGoogle ScholarPubMed
SHOA (Servicio Hidrografico y Oceanografico de la Armada de Chile) (2006) Atlas Oceanografico de Chile, Vol. 1 (18°21′S a 50°00′S). Valparaiso: SHOA.Google Scholar
Sokal, R. and Rohlf, F. (1997) Biometry: The principles and practice of statistics in biological research. 3rd edition. New York: W.H. Freeman & Company, 887 pp.Google Scholar
Stillman, J.H. (2000) Evolutionary history and adaptive significance of respiratory structures on the legs of intertidal porcelain crabs. Physiological and Biochemical Zoology 73, 8696.CrossRefGoogle ScholarPubMed
Thiel, M., Macaya, E., Acuña, E., Arntz, W., Bastías, H., Brokordt, K., Camus, P.A., Castilla, J.C., Castro, L.R., Cortés, M., Dumont, C.P., Escribano, R., Fernández, M., Lancelotti, D., Gajardo, J.A., Gaymer, C.F., Gómez, I., González, A.E., González, H.E., Haye, P.A., Illanes, J.E., Iriarte, J.L., Luna-Jorquera, G., Luxoro, C., Manríquez, P.H., Marín, V., Muñoz, P., Navarrete, S.A., Pérez, E., Poulin, E., Sellanes, J., Sepúlveda, A., Stotz, W., Tala, F., Thomas, A., Vargas, C.A., Vásquez, J.A. and Vega, A. (2007) The Humboldt Current System of northern and central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanography and Marine Biology: an Annual Review 45, 195345.CrossRefGoogle Scholar
Truchot, J.P. (1990) Respiratory and ionic regulation in invertebrates exposed to both water and air. Annual Review of Physiology 52, 6176.CrossRefGoogle Scholar
Vargas, M.A., Lagos, M.E., Contreras, D.A. and Cáceres, C.W. (2010) Área de estructuras respiratorias y su efecto en la regulación del equilibrio ácido-base en dos especies de cangrejos porcelánidos intermareales, Petrolisthes laevigatus y Petrolisthes violaceus. Revista de Biología Marina y Oceanografía 45, 245253.Google Scholar
Varley, D. and Greenaway, P. (1992) The effect of emersion on hemolimph acid–base balance and oxygen levels in Silla serrata Forskål (Brachyura: Portunidae). Journal of Experimental Marine Biology and Ecology 163, 112.CrossRefGoogle Scholar
Vernberg, F.J. (1959) Studies on the physiological variation between tropical and temperate zone fiddler crabs of the genus Uca. II. Oxygen consumption of whole organisms. Biological Bulletin. Marine Biological Laboratory, Woods Hole 117, 163184.CrossRefGoogle Scholar
Waldron, F.M., Taylor, H.H. and Foster, M.E. (1986) Acid–base disturbances following exercise in a high-shore crab, Cyclograpsus lavauxi. New Zealand Journal of Marine and Freshwater Research 20, 479487.CrossRefGoogle Scholar
Wheatly, M. and Henry, R. (1992) Extracellular and intracellular acid–base regulation in crustaceans. Journal of Experimental Zoology 263, 127142.CrossRefGoogle Scholar
Whiteley, N.M., Rastrick, S.P.S., Lunt, D.H. and Rock, J. (2011) Latitudinal variations in the physiology of marine gammarid amphipods. Journal of Experimental Marine Biology and Ecology 400, 7077.CrossRefGoogle Scholar
Willmer, P., Stone, G. and Johnston, I. (2000) Environmental physiology of animals. Oxford: Blackwell Science.Google Scholar
Yang, Z. and Bielanoski, J.P. (2000) Statistical methods for detecting molecular adaptation. Trends in Ecology and Evolution 15, 496503.CrossRefGoogle ScholarPubMed
Zar, J. (1996) Bioestatistical analysis, 3rd edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Geographic variation in acid–base balance of the intertidal crustacean Cyclograpsus cinereus (Decapoda, Grapsidae) during air exposure
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Geographic variation in acid–base balance of the intertidal crustacean Cyclograpsus cinereus (Decapoda, Grapsidae) during air exposure
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Geographic variation in acid–base balance of the intertidal crustacean Cyclograpsus cinereus (Decapoda, Grapsidae) during air exposure
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *