Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-jpcp9 Total loading time: 0.574 Render date: 2022-11-29T21:25:23.934Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

A new species of Rimicaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from hydrothermal vent fields on the Mid-Cayman Spreading Centre, Caribbean

Published online by Cambridge University Press:  14 December 2011

Verity Nye*
Affiliation:
Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
Jon Copley
Affiliation:
Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
Sophie Plouviez
Affiliation:
Nicholas School of the Environment, Duke University Marine Laboratory, 135, Duke Marine Lab Road, Beaufort, NC 28516, USA
*
Correspondence should be addressed to: V. Nye, Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK email: vn205@noc.soton.ac.uk

Abstract

Rimicaris hybisae sp. nov. is described from hydrothermal vent fields on the world's deepest seafloor spreading centre, the Mid-Cayman Spreading Centre (MCSC), Caribbean, at depths of 2300–4960 m. The new species is described and illustrated on the basis of 17 specimens. Brief notes on the distribution and habitat of the new species are provided. Molecular phylogenetic data from mitochondrial COI (460 base pair (bp)), 16S ribosomal RNA (549 bp) and nuclear 18S ribosomal RNA (576 bp) regions is used to complement the description. Morphological variation within R. hybisae sp. nov. and morphological affinities with previously described species are discussed. Based on morphological and molecular evidence, the new species is provisionally assigned to the genus Rimicaris, and differs from all known species in the genus by a distinctive pair of ‘pores' on the posterior lobes of its four-lobed dorsal organ. An emended diagnosis for Rimicaris is provided. Rimicaris hybisae sp. nov. is the first taxon to be described from MCSC vent fields. This record extends the known geographical range of Rimicaris into the Caribbean Sea and constitutes the deepest documented occurrence of alvinocaridid shrimp.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahyong, S.T. (2009) New species and new records of hydrothermal vent shrimps from New Zealand (Caridea: Alvinocarididae, Hippolytidae). Crustaceana 82, 775794.CrossRefGoogle Scholar
Ballard, R.D., Bryan, W., Dick, H., Emery, K.O., Thompson, G., Uchupi, E., Davis, K.E., De Boer, J., Delong, S.E., Fox, P.J., Spydell, R., Stroup, J., Melson, W.G. and Wright, R. (1979) Geological and geophysical investigation of the Mid-Cayman Rise Spreading Centre: initial results and observations. American Geophysical Union, Maurice Ewing Series 2, 6595.Google Scholar
Beltenev, V., Ivanov, V., Rozhdestvenskaya, I., Cherkashev, G., Stepanov, T., Shilov, V., Davydov, M., Laiba, A., Kaylio, V., Narkevsky, E., Pertsev, A., Dobretzova, I., Gustaytis, A., Popva, Y., Amplieva, Y., Evrard, C., Moskalev, L. and Gebruk, A. (2009) New data about hydrothermal fields on the Mid-Atlantic Ridge between 11°–14°N: 32nd Cruise of R/V Professor Logatchev. InterRidge News 18, 1317.Google Scholar
Burton, K.W., Ling, H. and O'Nions, R.K. (1997) Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature 383, 382385.CrossRefGoogle Scholar
Calman, W.T. (1896) On deep-sea Crustacea from the south-west of Ireland. Transactions of the Royal Irish Academy 31, 120.Google Scholar
Chan, T.-Y. and Yu, H.-P. (1991) Eugonatonotus chacei sp. nov., second species of the genus (Crustacea, Decapoda, Eugonatonotidae). Bulletin du Muséum National d'Histoire Naturelle 13, 143152.Google Scholar
Christoffersen, M.L. (1986) Phylogenetic relationships between Oplophoridae, Atyidae, Pasiphaeidae, Alvinocarididae fam. n., Bresiliidae, Psalidopodidae and Disciadidae (Crustacea Caridea Atyoidea). Boletim de Zoologia, Universidade de São Paulo 10, 273281.CrossRefGoogle Scholar
Christoffersen, M.L. (1990) A new superfamily classification of the Caridea (Crustacea: Pleocymata) based on phylogenetic pattern. Zeitschrift für Zoologische Systematik und Evolutionsforschung 28, 94106.CrossRefGoogle Scholar
Coleman, C.O. (2003) ‘Digital inking’: how to make perfect line drawings on computers. Organisms Diversity & Evolution 3 Electronic Supplement 14, 114.Google Scholar
Coleman, C.O. (2009) Drawing setae the digital way. Zoosytematics and Evolution 85, 305310.CrossRefGoogle Scholar
Connelly, D.P., Copley, J.T., Murton, B.J., Stansfield, K., Tyler, P.A., German, C.R., Van Dover, C.L., Amon, D., Furlong, M., Grindlay, N., Hayman, N., Hühnerbach, V., Judge, M., Le Bas, T., McPhail, S., Meier, A., Nakamura, K-I., Nye, V., Pebody, M., Pedersen, R.B., Plouviez, S., Sands, C., Searle, R.C., Taws, S. and Wilcox, S. (in press) Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nature Communications.Google Scholar
Dana, J.D. (1852) Crustacea. Part I. United States Exploring Expedition. During the years 1838, 1839, 1840, 1841, 1842. Under the command of Charles Wilkes, U.S.N., Volume 13. Philadelphia: C. Sherman.Google Scholar
De Grave, S., Pentcheff, N.D., Ahyong, S.T., Chan, T.Y., Crandall, K.A., Dworschak, P.C., Felder, D.L., Feldmann, R.M., Fransen, C.H.J.M., Goulding, L.Y.D., Lemaitre, R., Low, M.E.Y., Martin, J.W., Ng, P.K.L., Schweitzer, C.E., Tan, S.H., Tshudy, D. and Wetzer, R. (2009) A classification of living and fossil genera of decapod crustaceans. Raffles Bulletin of Zoology Supplement 21, 1109.Google Scholar
Desbruyères, D., Segonzac, M. and Bright, M. (2006) Handbook of deep-sea hydrothermal vent fauna. Vienna: Biologiezentrum der Oberosterreichische Landesmuseen.Google Scholar
Doyle, J.J. and Dickson, E. (1987) Preservation of plant samples from DNA restriction endonuclease analysis. Taxon 36, 715722.CrossRefGoogle Scholar
Escobar-Briones, E. and Villalobos Hiriart, J.L. (2003) Deep-water caridean shrimps (Crustacea: Decapoda) from Banco Chinhorro and adjacent areas in the Northern Caribbean. Bulletin of Marine Science 73, 99122.Google Scholar
Fabri, M-C., Bargain, A., Briand, P., Gebruk, A., Fouquet, Y., Morineaux, M. and Desbruyères, D. (2011) The hydrothermal vent community of a new deep-sea file, Ashadze-1, 12°58′N on the Mid-Atlantic Ridge. Journal of the Marine Biological Association of the United Kingdom 91, 113.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Fujikura, K., Hashimoto, J., Fujiwara, Y. and Okutani, T. (1995) Community ecology of the chemosynthetic community at Off Hatsushima site, Sagami Bay, Japan. JAMSTEC Journal of Deep-Sea Research 11, 227241.Google Scholar
Gebruk, A.V., Pimenov, N.V. and Savvichev, A.S. (1993) Feeding specialization of bresiliid shrimps in the TAG site hydrothermal community. Marine Ecology Progress Series 98, 247253.CrossRefGoogle Scholar
Gebruk, A.V., Galkin, S.V., Vereshchaka, A.L., Moskalev, L.I. and Southward, A.J. (1997) Ecology and biogeography of the hydrothermal vent fauna of the Mid-Atlantic Ridge. Advances in Marine Biology 32, 93144.CrossRefGoogle Scholar
German, C.R., Bowen, A., Coleman, M.L., Honig, D.L., Huber, K.A., Jakuba, M. V., Kinsey, J.C., Kurz, M.D., Leroy, S., McDermott, J.M., Mercier de Lepinay, B., Nakamura, K., Seewald, J.S., Smith, J. L., Sylva, S.P., Van Dover, C.L., Whitcomb, L.L. and Yoerger, D.R. (2010) Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proceedings of the National Academy of Sciences of the United States of America 107, 1402014025.CrossRefGoogle ScholarPubMed
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hashimoto, J., Ohta, S., Gamo, T., Chiba, H., Yamaguchi, T., Tsuchida, S., Okudaira, T., Watabe, H., Yamanaka, T. and Kitazawa, M. (2001) First hydrothermal vent communities from the Indian Ocean discovered. Zoological Science 18, 717721.CrossRefGoogle Scholar
Holthuis, L.B. (1993) The recent genera of the caridean and stenopodidean shrimps (Crustacea, Decapoda) with an appendix on the order Amphionidacea. Leiden: Nationaal Natuurhistorisch Museum.Google Scholar
Jukes, T.H. and Cantor, C.R. (1969) Evolution of protein molecules. In Munro, H.N. (ed.) Mammalian protein metabolism. New York: Academic Press, pp. 21132.CrossRefGoogle Scholar
Kikuchi, T. and Ohta, S. (1995) Two caridean shrimps of the families Bresiliidae and Hippolytidae from a hydrothermal field on the Iheya-Ridge, off the Ryukyu-Islands, Japan. Journal of Crustacean Biology 15, 771785.CrossRefGoogle Scholar
Kikuchi, T. and Hashimoto, J. (2000) Two new caridean shrimps of the family Alvinocarididae (Crustacea, Decapoda) from a hydrothermal knoll in the Mid-Okinawa Trough, Japan. Species Diversity 5, 135148.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Komai, T. and Segonzac, M. (2003) Review of the hydrothermal vent shrimp genus Mirocaris, redescription of M. fortunata and reassessment of the taxonomic status of the family Alvinocarididae (Crustacea: Decapoda: Caridea). Cahiers de Biologie Marine 44, 199215.Google Scholar
Komai, T. and Segonzac, M. (2004) A new genus and species of alvinocaridid shrimp (Crustacea: Decapoda: Caridea) from hydrothermal vents on the North Fiji and Lau Basins, south-western Pacific. Journal of the Marine Biological Association of the United Kingdom 84, 11791188.CrossRefGoogle Scholar
Komai, T. and Segonzac, M. (2005) A revision of the genus Alvinocaris Williams and Chace (Crustacea: Decapoda: Caridea: Alvinocarididae), with descriptions of a new genus and a new species of Alvinocaris. Journal of Natural History 39, 11111175.CrossRefGoogle Scholar
Komai, T. and Segonzac, M. (2006) Chorocaris chacei Williams & Rona, 1986, Chorocaris paulexa Martin & Shank, 2005, Chorocaris vandoverae Martin & Hessler, 1990, Rimicaris exoculata Williams & Rona, 1986. In Desbruyères, D., Segonzac, M. and Bright, M. (eds) Handbook of deep-sea hydrothermal vent fauna. Vienna: Biologiezentrum der Oberosterreichische Landesmuseen, pp. 421423.Google Scholar
Komai, T. and Segonzac, M. (2008) Taxonomic reviews of the hydrothermal vent shrimp genera Rimicaris Williams & Rona and Chorocaris Martin & Hessler (Crustacea: Decapoda: Caridea: Alvinocarididae). Journal of Shellfish Research 27, 2141.CrossRefGoogle Scholar
Komai, T. and Chan, T.Y. (2010) A new genus and two new species of alvinocaridid shrimps (Crustacea: Decapoda: Caridea) from a hydrothermal vent field off northwestern Taiwan. Zootaxa 2372, 1532.Google Scholar
Komai, T. and Yamada, Y. (2010) A new species of the rare caridean genus Bresilia Calman (Crustacea: Decapoda: Bresiliidae) from the Ryukyu Islands, Japan, representing a family new to the North Pacific marine fauna. Zootaxa 2450, 4152.Google Scholar
Komai, T. and Yamada, Y. (2011) A new species of the caridean genus Bresilia Calman (Decapoda: Bresiliidae) discovered from a shallow-water submarine cave in Okinawa Islands, Japan. Bulletin of the National Museum of Nature and Science Series A Supplement 5, 7182.Google Scholar
Komai, T., Shank, T.M. and Van Dover, C.L. (2005) A new species of Alvinocaris (Crustacea: Decapoda: Caridea: Alvinocaridae) and a new record of A. muricola from methane seeps on the Blake Ridge Diapir, north-western Atlantic. Zootaxa 1019, 2742.CrossRefGoogle Scholar
Komai, T., Martin, J.W., Zala, K., Tsuchida, S. and Hashimoto, J. (2006) A new species of Mirocaris (Crustacea: Decapoda: Caridea: Alvinocarididae) associated with hydrothermal vents on the Central Indian Ridge, Indian Ocean. Scientia Marina 70, 109119.CrossRefGoogle Scholar
Komai, T., Giere, O. and Segonzac, M. (2007) New record of alvinocaridid shrimps (Crustacea: Decapoda: Caridea) from hydrothermal vent fields on the southern Mid-Atlantic Ridge, including a new species of the genus Opaepele. Species Diversity 12, 237253.Google Scholar
Kuenzler, R.O, Kwasniewski, J.T., Jinks, R.N., Lakin, R.C., Battelle, B. -A., Herzog, E.D., Renninger, G.H. and Chamberlain, S.C. (1997) Retinal anatomy of new bresiliid shrimp from the Lucky Strike and Broken Spur hydrothermal vent fields on the Mid-Atlantic Ridge. Journal of the Marine Biological Association of the United Kingdom 77, 707725.CrossRefGoogle Scholar
Lakin, R.C., Jinks, R.N.Batelle, B.-A., Herzog, E.D., Kass, L., Renninger, G.H. and Chamberlain, S.C. (1997) Retinal anatomy of Chorocaris chacei, a deep-sea hydrothermal vent shrimp from the Mid-Atlantic Ridge. Journal of Comparative Neurology 383, 503514.3.0.CO;2-7>CrossRefGoogle Scholar
Latreille, P.A. (1802) Histoire naturelle, générale et particulière des Crustacés et des Insectes. Ouvrage faisant suite à l'histoire naturelle générale et particulière, composée par Leclerc de Buffon, et rédigée par C.S. Sonnini, membre de plusieurs sociétés savantes. Familles naturelles des genres, Volume 3. Paris: F. DuFart.Google Scholar
Lunina, A.A. and Vereshchaka, A.L. (2010) A new vent shrimp (Crustacea: Decapoda: Alvinocarididae) from the Mid-Atlantic Ridge. Zootaxa 2372, 6974.Google Scholar
Martin, J.W. and Hessler, R.R. (1990) Chorocaris vandoverae, a new genus and species of hydrothermal vent shrimp (Crustacea: Decapoda: Bresiliidae) from hydrothermal vent fields along the Mid-Atlantic Ridge. Contributions in Science, Natural History Museum of Los Angeles County 417, 111.Google Scholar
Martin, J.W. and Christiansen, J.C. (1995) A new species of the shrimp genus Chorocaris Martin and Hessler, 1990 (Crustacea, Decapoda, Bresiliidae) from hydrothermal vent fields along the Mid-Atlantic Ridge. Proceedings of the Biological Society of Washington 108, 220227.Google Scholar
Martin, J.W. and Davis, G.E. (2001) An updated classification of the Recent Crustacea. Natural History Museum of Los Angeles County, Science Series 39, 1124.Google Scholar
Martin, J.W. and Haney, T.A. (2005) Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005. Zoological Journal of the Linnean Society 145, 445522.CrossRefGoogle Scholar
Martin, J.W. and Shank, T.M. (2005) A new species of the shrimp genus Chorocaris (Decapoda: Caridea: Alvinocarididae) from hydrothermal vents in the eastern Pacific Ocean. Proceedings of the Biological Society of Washington 111, 183198.CrossRefGoogle Scholar
Martin, J.W., Signorovich, J. and Patel, H. (1998) Comparison of the carpal cleaning brush in two genera of hydrothermal vent shrimp (Crustacea, Decapoda, Bresiliidae). Journal of Morphology 235, 3139.3.0.CO;2-R>CrossRefGoogle Scholar
Ohta, S. and Kim, D. (2001) Submersible observations of the hydrothermal vent communities on the Iheya Ridge, Mid Okinawa Trough, Japan. Journal of Oceanology 57, 663667.CrossRefGoogle Scholar
O'Neill, P.J., Jinks, R.N., Herzog, E.D., Batelle, B.-A., Kass, L., Renninger, G.H. and Chamberlain, S.C. (1995) The morphology of the dorsal eye of the hydrothermal vent shrimp, Rimicaris exoculata. Visual Neuroscience 12, 861875.CrossRefGoogle ScholarPubMed
Palumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. In Hillis, D.M., Moritz, C. and Mable, B.K. (eds) Molecular systematics. Sunderland, MA: Sinauer Associates, pp. 205247.Google Scholar
Peli, D.G. and Chamberlain, S.C. (1989) The visibility of 350°C blackbody radiation by the shrimp Rimicaris exoculata and man. Nature 337, 460461.CrossRefGoogle Scholar
Rosencrantz, E., Ross, I.R. and Sclater, J.G. (1988) Age and spreading history of the Cayman Trough as determined from depth, heat flow, and magnetic anomalies. Journal of Geophysical Research 93, 21412157.CrossRefGoogle Scholar
Saitou, N. and Nei, M. (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Segonzac, M. (1992) The hydrothermal vent communities of Snake Pit area (Mid-Atlantic Ridge, 23°N, 3,480 m)—megafaunal composition and microdistribution. Comptes Rendus de l'Académie des Sciences 314, 593600.Google Scholar
Segonzac, M, de Saint Laurent, M. and Casanova, B. (1993) L'énigme du comportement trophiques des crevettes Alvinocarididae des sites hydrothermaux de la dorsale médio-atlantique. Cahiers de Biologie Marine 34, 535571.Google Scholar
Shank, T.M. and Martin, J.W. (2003) A new caridean shrimp of the family Alvinocarididae from thermal vents at Menez Gwen on the Mid-Atlantic Ridge. Proceedings of the Biological Society of Washington 116, 158167.Google Scholar
Shank, T.M., Black, M.B., Halanych, K.M., Lutz, R.A. and Vrijenhoek, R.C. (1999) Miocene radiation of deep-sea hydrothermal vent shrimp (Caridae: Bresiliidae): evidence from mitochondrial cytochrome oxidase subunit I. Molecular Phylogenetics and Evolution 13, 244254.CrossRefGoogle Scholar
Sogin, M.L. (1990) Amplification of ribosomal RNA genes for molecular evolution studies. In Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (eds) PCR protocols. A guide to methods and applications. San Diego, CA: Academic Press, pp. 307314.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28, 27312739. doi:10.1093/molbev/msr121.CrossRefGoogle ScholarPubMed
Tsuchida, S., Yamaguchi, T., Komai, T and Watanabe, H. (2008) Arthropoda. In Fujikura, K., Okutani, T. and Maruyama, T. (eds) Deep-sea life—biological observations using research submersibles. Hatano: Tokai University Press, pp.100178.Google Scholar
Van Dover, C.L. (2000) The ecology of deep-sea hydrothermal vents. Princeton: Princeton University Press.Google Scholar
Van Dover, C.L., Fry, B., Grassle, J.F., Humphris, S. and Rona, P.A. (1988) Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid-Atlantic Ridge. Marine Biology 98, 209216.CrossRefGoogle Scholar
Van Dover, C.L., Szuts, E.Z., Chamberlain, S.C. and Cann, J.R. (1989) A novel eye in eyeless shrimp from hydrothermal vents on the Mid-Atlantic Ridge. Nature 337, 458460.CrossRefGoogle ScholarPubMed
Van Dover, C.L., Cann, J.R., Cavanaugh, C, Chamberlain, S., Delaney, J.R., Janecky, D., Imhoff, J. and Tyson, J.A. (1994) Light at deep sea hydrothermal vents. EOS, Transactions of the American Geophysical Union 75, 4445.CrossRefGoogle Scholar
Van Dover, C.L., Reynolds, G.T., Chave, A.D. and Tyson, J.A. (1996) Light at deep-sea hydrothermal vents. Geophysical Research Letters 23, 20492052.CrossRefGoogle Scholar
Van Dover, C.L., Humphris, S.E., Fornari, D., Cavanaugh, C.M., Collier, R., Goffredi, S.K., Hashimoto, J., Lilley, M.D., Reysenbach, A.L., Shank, T.M., Von Damm, K.L., Banta, A., Gallant, R.M., Gotz, D., Green, D., Hall, J., Harmer, T.L., Hurtado, L.A., Johnson, P., McKiness, Z.P., Meredith, C., Olson, E., Pan, I.L., Turnipseed, M., Won, Y., Young, C.R. and Vrijenhoek, R.C. (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818823.CrossRefGoogle ScholarPubMed
Van Dover, C.L., Aharon, P., Bernhard, J.M., Caylor, E., Doerries, M., Flickinger, W., Gilhooly, W., Goffredi, S.K., Knick, K.E., Macko, S.A., Rapoport, S., Raulfs, E. C., Ruppel, C., Salerno, J.L., Seitz, R.D., Sen Gupta, B.K., Shank, T., Turnipseed, M. and Vrijenhoek, R. (2003) Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep-Sea Research I 50, 281300.CrossRefGoogle Scholar
Vereshchaka, A.L. (1996) A new genus and species of caridean shrimp (Crustacea: Decapoda: Alvinocarididae) from North Atlantic hydrothermal vents. Journal of the Marine Biological Association of the United Kingdom 76, 951961.CrossRefGoogle Scholar
Vereshchaka, A.L. (1997) A new family for a deep-sea caridean shrimp from North Atlantic hydrothermal vents. Journal of the Marine Biological Association of the United Kingdom 77, 245438.CrossRefGoogle Scholar
Watabe, H. and Miyake, H. (2000) Decapod fauna of the hydrothermally active and adjacent fields on the Hatoma Knoll, southern Japan. JAMSTEC Journal of Deep Sea Research 17, 2934.Google Scholar
Watabe, H. and Hashimoto, J. (2002) A new species of the genus Rimicaris (Alvinocarididae: Caridea: Decapoda) from the active hydrothermal vent field, ‘Kairei Field,’ on the Central Indian Ridge, the Indian Ocean. Zoological Science 19, 11671174.CrossRefGoogle Scholar
Webber, W.R. (2004) A new species of Alvinocaris (Crustacea: Decapoda: Alvinocarididae) and new records of alvinocaridids from hydrothermal vents north of New Zealand. Zootaxa 444, 126.CrossRefGoogle Scholar
Wicksten, M.K. (1989) Encantada spinoculata, a new genus and species of shrimp from the Galapagos Islands (Caridea, Bresiliidae). Journal of Crustacean Biology 9, 667671.CrossRefGoogle Scholar
Williams, A.B. (1988) New marine decapod crustaceans from waters influenced by hydrothermal discharge, brine and hydrocarbon seepage. Fishery Bulletin 86, 263287.Google Scholar
Williams, A.B. and Chace, F.A. Jr (1982) A new caridean shrimp of the family Bresiliidae from thermal vents of the Galapagos Rift. Journal of Crustacean Biology 2, 136147.CrossRefGoogle Scholar
Williams, A.B. and Rona, P.A. (1986) Two new caridean shrimps (Bresiliidae) from a hydrothermal field on the Mid-Atlantic Ridge. Journal of Crustacean Biology 6, 446462.CrossRefGoogle Scholar
Williams, A.B. and Dobbs, F.C. (1995) A new genus and species of caridean shrimp (Crustacea: Decapoda: Bresiliidae) from hydrothermal vents on Loihi Seamount, Hawaii. Proceedings of the Biological Society of Washington 108, 227237.Google Scholar
Zelnio, K.A. and Hourdez, S. (2009) A new species of Alvinocaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from hydrothermal vents at the Lau Basin, southwest Pacific, and a key to the species of Alvinocarididae. Proceedings of the Biological Society of Washington 122, 5271.CrossRefGoogle Scholar
31
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A new species of Rimicaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from hydrothermal vent fields on the Mid-Cayman Spreading Centre, Caribbean
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A new species of Rimicaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from hydrothermal vent fields on the Mid-Cayman Spreading Centre, Caribbean
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A new species of Rimicaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from hydrothermal vent fields on the Mid-Cayman Spreading Centre, Caribbean
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *