Hostname: page-component-f7d5f74f5-9ndps Total loading time: 0 Render date: 2023-10-03T05:10:28.456Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Variations in Posidonia oceanica meadow structure along the coast of the Dugi Otok Island (eastern Adriatic Sea)

Published online by Cambridge University Press:  24 June 2008

Petar Kru΂ić*
Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
Correspondence should be addressed to: Petar Kru΂ić Department of Biology Faculty of Science, University of Zagreb Rooseveltov trg 6, 10000 Zagreb, Croatia email:


Although the anthropogenic impact on Posidonia oceanica meadows in the Mediterranean Sea has been studied over the last few decades, the data about the status of this endemic magnoliophyte are scarcer from the Adriatic Sea. Samples of P. oceanica meadows were collected in June and July 2004 using SCUBA diving at 8 sites in the area of the Dugi Otok Island, all at depths of 10 m. The meadow's shoot density was measured, and shoots were collected to be examined and compared through number of leaves per shoot, leaf surface per shoot, leaf area index, number and biomass of taxa of epiphytic flora. Significant differences in P. oceanica meadow structure were found among investigated sites, especially between sites in the vicinity of the fish farm and the other sites. Meadow density decreased at sites in the Dugi Otok channel and the main impact factors seem to be the input of organic matter, originating from the fish cages and sewage input. These human activities are a source of nutrient pollution and stimulate blooms of phytoplankton and higher algae. The sea grass meadow vitality seems to be more negatively affected in the channel. The highest values of shoot density were recorded at investigated sites VR and ME at the outer part of the Dugi Otok Island. The shoot density was very low at site FU, situated in the channel. Biomass of the epiphytic algae exhibited the highest values at the site FU, while at the other investigated sites the values were significantly lower. Concerning the epiphytic macroflora, a total of 55 taxa of epiphytic macroalgae were identified and the class Rhodophyta dominated in all samples. The present study shows the high differences in morphological and structural characteristics of Posidonia oceanica meadows among various sites with and without anthropogenic influence.

Research Article
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Bellan-Santini, D., Lacaze, J.C. and Poizat, C. (1994) Les biocénoses marines et littorales de Méditerranée. Synthèse, menaces et perspectives. Paris: Muséum National d'Histoire Naturelle Publications.Google Scholar
Blundo, M.C., Di Martino, V. and Giaccone, G. (1999) Flora epifita e struttura della prateria a Posidonia oceanica (L.) Delile nell'area protetta dell' Isola di Vendicari (Siracusa; Sicilia sud orientale). Bolletino delle Sedute dell' Accademia Gioenia di Scienze Naturali 31, 175187.Google Scholar
Boudouresque, C.F. (2003) The erosion of Mediterranean biodiversity. In Rodríguez-Prieto, C. et al. (eds) The Mediterranean Sea: an overview of its present state and plans for future protection. Girona: Servei de Publicacions de la Universitat de Girona, pp. 53112.Google Scholar
Boudouresque, C.F., Meinesz, A., Ballesteros, E., Ben Maiz, N., Boisset, F., Cinelli, F., Cirik, S., Cormaci, M., Jeudy De Grissac, A., Laboret, J., Lanfranco, E., Lundberg, B., Mayhoub, H., Panayotidis, P., Semroud, R., Sinnassamy, J.M. and Span, A. (1990) Livre Rouge ‘Gérard Vuignier’ des végétaux, peuplements et paysages marins menacés de Méditerranée. UNEP/IUCN/GIS Posidonie. MAP Technical Report Series No. 43. UNEP, Athens, 250 pp.Google Scholar
Cancemi, G., De Falco, G. and Pergent, G. (2003) Effects of organic matter input from a fish farming facility on a Posidonia oceanica meadow. Estuarine, Coastal and Shelf Science 56, 961968.CrossRefGoogle Scholar
Cinelli, F., Cormaci, M., Furnari, G. and Mazzella, L. (1984) Epiphytic macroflora of Posidonia oceanica (L.) Delile leaves around the Island of Ischia (Gulf of Neaples). In Bourdouresque, C.F. et al. (eds) 1st International Workshop on Posidonia oceanica Beds. G.I.S. Posidonie, Marseille, pp. 9199.Google Scholar
Costanza, R., Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. and Van den Belt, M. (1997) The value of the world's ecosystem services and natural capital. Nature 387, 253260.CrossRefGoogle Scholar
Delgado, O., Grau, A., Pou, S., Riera, F., Massuti, C., Zabala, M. and Ballesteros, E. (1997) Seagrass regression caused by fish cultures in Fornells Bay (Menorca, Western Mediterranean). Oceanologica Acta 20, 557563.Google Scholar
Delgado, O., Ruiz, J., Pérez, M., Romero, J. and Ballesteros, E. (1999) Effects of fish farming on seagrass (Posidonia oceanica) in a Mediterranean bay: seagrass decline after organic loading cessation. Oceanologica Acta 22, 109117.CrossRefGoogle Scholar
Den Hartog, C. (1994) Suffocation of a littoral Zostera bed by Enteromorpha radiata. Aquatic Botany 47, 2128.CrossRefGoogle Scholar
Gambi, M.C., Buia, E., Casola, E. and Scardi, M. (1989) Estimates of water movement in Posidonia oceanica beds: a first approach. In Boudouresque, C.F. et al. (eds) 5th International Workshop on Posidonia oceanica Beds. G.I.S. Posidonie, Marseille, pp. 101112.Google Scholar
Giuliani, S., Virno Lamberti, C., Sonni, C. and Pellegrini, D. (2005) Mucilage impact on gorgonians in the Tyrrhenian Sea. Science of the Total Environment 353, 340349.CrossRefGoogle ScholarPubMed
Guidetti, P. and Fabiano, M. (2000) The use of lepidochronology to assess the impact of terrigenous discharges on the primary leaf production of the Mediterranean seagrass Posidonia oceanica. Marine Pollution Bulletin 40, 449453.CrossRefGoogle Scholar
Hemminga, M.A. and Duarte, C. (2000) Seagrass ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Holmer, M., Perez, M. and Duarte, C.M. (2003) Benthic primary producers—a neglected environmental problem in Mediterranean maricultures? Marine Pollution Bulletin 46, 13721376.CrossRefGoogle Scholar
Karakassis, I., Hatziyanni, E., Tsapakis, M. and Plaiti, W. (1999) Benthic recovery following cessation of fish farming: a series of successes and catastrophes. Marine Ecology Progress Series 184, 205218.CrossRefGoogle Scholar
Karakassis, I., Tsapakis, M., Hatziyanni, E. and Pitta, P. (2001) Diel variation of nutrients and chlorophyll in sea bream and sea bass cages in the Mediterranean. Fresenius Environmental Bulletin 10, 278283.Google Scholar
Larkum, W.D., Orth, R.J. and Duarte, C.M. (2006) Seagrasses: biology, ecology and conservation. Amsterdam: Springer.Google Scholar
Maldonado, M., Carmona, M.C., Echeverría, Y. and Riesgo, A. (2005) The environmental impact of Mediterranean cage fish farms at semi-exposed locations: does it need a re-assessment? Helgoländer Marine Research 59, 121135.CrossRefGoogle Scholar
Marbà, N. and Duarte, M.C. (1997) Interannual changes in seagrass (Posidonia oceanica) growth and environmental change in the Mediterranean littoral zone. Limnology and Oceanography 42, 800810.CrossRefGoogle Scholar
Marbà, N., Santiago, R., Dìaz-Almela, E., Álvarez, E. and Duarte, C.M. (2006) Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. Estuarine, Coastal and Shelf Science 67, 475483.CrossRefGoogle Scholar
Ott, J.A. (1980) Growth and production in Posidonia oceanica (L.) Delile. PSZNI: Marine Ecology 1, 4764.CrossRefGoogle Scholar
Panayotidis, P. (1980) Contribution à l'étude qualitative et quantitative de l'association Posidonietum oceanicae Funk 1927. PhD thesis, University of Aix-Marseille, France.Google Scholar
Pergent, G., Mendez, S., Pergent-Martini, C. and Pasqualini, V. (1999) Preliminary data on the impact of fish farming facilities on Posidonia oceanica meadows in the Mediterranean. Oceanologica Acta 22, 95107.CrossRefGoogle Scholar
Pergent, G., Pasqualini, V., Pergent-Martini, C., Skoufas, G., Sourbes, L. and Tsirika, A. (2003) Caractérisation des herbiers à Posidonia oceanica dans le Parc Marin National de Zakynthos (Gréce). Contrat Centre d' Activité Régionale pour les Aires Spécialement Protégées et Seagrass 2000, 54 pp.Google Scholar
Pergent, G., Pergent-Martini, C. and Boudouresque, C. (1995) Utilisation de l'herbier à Posidonia oceanica comme indicateur biologique de la qualité du milieu littoral en Mediterranée: etat des connaissances. Mésogée 54, 329.Google Scholar
Pergent, G., Romero, J., Pergent-Martini, C., Mateo, M.A. and Boudouresque, C.F. (1994) Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Marine Ecology Progress Series 106, 139146.CrossRefGoogle Scholar
Pergent-Martini, C. and Pergent, G. (1995) Impact of a sewage treatment plant on the Posidonia oceanica meadow: assessment criteria. In Özhan, E. (ed.) Proceedings of the second International conference on the Mediterranean coastal environment, 24–27 October 1995. Vol. 95. MEDCOAST, pp. 13891399.Google Scholar
Pergent-Martini, C. and Pergent, G. (1996) Spatio-temporal dynamics of Posidonia oceanica beds near a sewage outfall (Mediterranean—France). In Kuo, J. et al. (eds) Seagrass biology: Proceedings of an international workshop. Faculty of Sciences, University of Western Australia, Australia, pp. 229306.Google Scholar
Pergent-Martini, C., Boudouresque, C., Pasqualini, V. and Pergent, G. (2006) Impact of fish farming facilities on Posidonia oceanica meadows: a review. Marine Ecology 27, 310319.CrossRefGoogle Scholar
Piazzi, L., Balata, D. and Cinelli, F. (2002) Epiphytic macroalgal assemblages of Posidonia oceanica rhizomes in the western Mediterranean. European Journal of Phycology 37, 6976.CrossRefGoogle Scholar
Piazzi, L., Balata, D. and Cinelli, F. (2004) Species composition and morphological groups of macroalgal assemblages around Gorgona Island (north-western Mediterranean Sea). Cryptogamie Algologie 25, 1938.Google Scholar
Pitta, P., Apostolaki, E.T., Giannoulaki, M. and Karakassis, I. (2005) Mesoscale changes in the water column in response to fish farming zones in three coastal areas in the Eastern Mediterranean Sea. Estuarine, Coastal and Shelf Science 65, 501512.CrossRefGoogle Scholar
Pitta, P., Apostolaki, E.T., Tsagaraki, T., Tsapakis, M. and Karakassis, I. (2006) Fish farming effects on chemical and microbial variables of the water column: a spatio-temporal study along the Mediterranean Sea. Hydrobiologia 563, 99108.CrossRefGoogle Scholar
Platini, F. (2000) La protection des habitats aux herbiers en Méditerranée. Rapport PNUE, PAM, CAR/ASP edition, PNUE Publications, Tunis, 65 pp.Google Scholar
Procaccini, G., Buia, M.C., Gambi, M.C., Perez, M., Pergent, G., Pergent-Martini, C. and Romero, J. (2003) The seagrasses of the Western Mediterranean. In Green, E.P. et al. (eds) World atlas of seagrasses. Berkeley, CA: University of California Press, pp. 4858.Google Scholar
Ruiz, J.M., Gutièrrez Ortega, J.M., Garcìa Charton, J.A. and Pèrez Ruzafa, A. (1999) Spatial characterization of environmental impact by bottom trawling on Posidonia oceanica (L.) Delile meadows in arificial reef areas of the southeastern coast of Spain. In Proceedings of the Seventh International Conference on Artificial Reefs (7th CARAH), pp. 664674.Google Scholar
Ruiz, J.M., Marín, A., Calvo, J.F. and Ramírez Díaz, L. (1993) Interactions between a foodway and coastal constructions in Aguilas bay (southeastern Spain). Ocean and Coastal Management 19, 241262.CrossRefGoogle Scholar
Ruiz, J.M., Pérez, M. and Romero, J. (2001) Effects of fish farm loadings on seagrass (Posidonia oceanica) distribution, growth and photosynthesis. Marine Pollution Bulletin 42, 749760.CrossRefGoogle ScholarPubMed
Scardi, M., Chessa, L.A., Fresi, E., Pais, A. and Serra, S. (2006) Optimizing interpolation of shoot density data from a Posidonia oceanica seagrass bed. Marine Ecology 27, 339349.CrossRefGoogle Scholar
Walker, D.I., Pergent, G. and Fazi, S. (2001) Seagrasses decomposition. In Short, F.T. et al. (eds) Global research methods. Amsterdam: Elsevier Scientific Publishers BV, pp. 313324.CrossRefGoogle Scholar