Hostname: page-component-6b989bf9dc-cvxtj Total loading time: 0 Render date: 2024-04-14T21:00:11.726Z Has data issue: false hasContentIssue false

Distribution patterns of molluscan fauna in seagrass beds in the Ensenada de O Grove (Galicia, north-western Spain)

Published online by Cambridge University Press:  29 October 2012

P. Quintas*
Affiliation:
Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias, Campus Lagoas Marcosende s/n, Universidad de Vigo, E-36200 Vigo, Galicia, Spain
J. Moreira
Affiliation:
Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
J.S. Troncoso
Affiliation:
Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias, Campus Lagoas Marcosende s/n, Universidad de Vigo, E-36200 Vigo, Galicia, Spain
*
Correspondence should be addressed to: P. Quintas, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias, Campus Lagoas Marcosende s/n, Universidad de Vigo, E-36200 Vigo, Galicia, Spain email: patriquipe@gmail.com

Abstract

The distribution and composition of molluscan assemblages of seagrass beds in the Ensenada de O Grove (north-western Spain), are described in this paper. The studied bottoms were mostly muddy and colonized predominantly by Zostera marina L., Z. noltei Hornemann, or by both species. Molluscan fauna was dominated by gastropods and bivalves, in terms of both species richness and abundance. A total of 7641 individuals belonging to 68 taxa was identified. The most abundant species were the gastropods Peringia ulvae, Retusa truncatula and Calyptraea chinensis and the bivalves Abra alba, Loripes lucinalis and Kurtiella bidentata. Cluster and multidimensional scaling analyses based on Bray–Curtis similarity coefficient showed two distinct faunal assemblages. Group A comprised intertidal sites colonized either by Z. noltei or by Z. marina and Z. noltei on muddy sand and sandy mud bottoms and subtidal sites exclusively colonized by Z. marina in the outer part of the inlet on muddy sand with the highest values of species richness and diversity. Group B consisted of sites characterized by low values of species diversity and a species composition typical of a ‘reduced Macoma community’. The sorting coefficient and the combination of gravel, sorting coefficient and carbonates content (BIOENV analyses) and the salinity of bottom water and depth (canonical correspondence analyses) were the most important abiotic variables in explaining the structure of the molluscan assemblage.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arroyo, M.C., Salas, C., Rueda, J.L. and Gofas, S. (2006) Temporal changes of mollusc populations from a Zostera marina bed in southern Spain (Alboran Sea), with biogeographic considerations. Marine Ecology: an Evolutionary Perspective 27, 417430.CrossRefGoogle Scholar
Attrill, M.J., Strong, J.A. and Rowden, A.A. (2000) Are macroinvertebrate communities influenced by seagrass structural complexity? Ecography 23, 114121.CrossRefGoogle Scholar
Ballesteros, E., García Raso, J.E., Salas, C., Gofas, S., Moreno, D. and Templado, J. (2004). La comunidad de Cymodocea nodosa: Flora y Fauna. In Luque, Á.A. and Templado, J. (eds) Praderas y bosques marinos de Andalucía. Seville, Spain: Consejería de Medio Ambiente, Junta de Andalucía, pp. 146153.Google Scholar
Bologna, P.A.X. (2006) Assessing within habitat variability in plant demography, faunal density, and secondary production in an eelgrass (Zostera marina L.) bed. Journal of Experimental Marine Biology and Ecology 329, 122134 Google Scholar
Boström, C. and Bonsdorff, E. (1997) Community structure and spatial variation of benthic invertebrates associated with Zostera marina L. beds in the Baltic Sea. Journal of Sea Research 37, 153166.CrossRefGoogle Scholar
Brooks, R. and Bell, S. (2001) Mobile corridors in marine landscapes: enhancement of faunal exchange at seagrass/sand ecotones. Journal of Experimental Marine Biology and Ecology 264, 6784.Google Scholar
Cacabelos, E., Gestoso, L. and Troncoso, J.S. (2008) Macrobenthic fauna in the Ensenada de San Simón (Galicia, NW Spain). Journal of the Marine Biological Association of the United Kingdom 88, 237245.Google Scholar
Cadée, G.C. (1968) Molluscan biocoenoses and thanatocoenoses in the Ría de Arosa, Galicia. Zoologische Verhandelingen 95, 1121.Google Scholar
Cardoso, P.G., Pardal, M.A., Lillebo, A.I., Ferreira, S.M., Raffaeli, D. and Marques, J.C. (2004) Dynamic changes in seagrass assemblages under eutrophication and implications for recovery. Journal of Experimental Marine Biology and Ecology 302, 233240.CrossRefGoogle Scholar
Çinar, M.E., Ergen, Z., Ozturk, B. and Kirkim, F. (1998) Seasonal analysis of zoobenthos associated with a Zostera marina L. bed in Gulbahce Bay (Aegean Sea, Turkey). Marine Ecology 19, 147162.Google Scholar
Clarke, K.R. and Warwick, R.M. (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: Natural Environmental Research Council, UK, 144 pp.Google Scholar
Currás, A. and Mora, J. (1990) Dinámica poblacional de Bittium reticulatum (Da Costa) e Hydrobia ulvae (Pennant) en fondos de Zostera spp. de la Ría del Eo (Galicia–Asturias). Thalassas 8, 9399.Google Scholar
Currás, A., Sánchez-Mata, A. and Mora, J. (1993) Estudio comparativo de la macrofauna bentónica de un fondo de Zostera marina y un fondo arenoso libre de cubierta vegetal. Cahiers de Biologie Marine 35, 91112.Google Scholar
Davison, D.M. and Hughes, D.J. (1998) Zostera biotope (Volume I): an overview of dynamics and sensitive characteristics for conservation management of marine SACs. Oban: Scottish Association for Marine Science (UK Marine SACs Project), 95 pp.Google Scholar
Duffy, J.E. and Harvilicz, A.M. (2001) Species-specific impacts of grazing amphipods in an eelgrass-bed community. Marine Ecology Progress Series 223, 201211.Google Scholar
Esquete, P., Moreira, J. and Troncoso, J.S. (2011) Peracarids assemblages of Zostera meadows in an estuarine ecosystem (O Grove inlet, NW Iberian Peninsula): spatial distribution and seasonal variation. Helgoland Marine Research 65, 445–445.Google Scholar
Field, J.G., Clarke, K.R. and Warwick, R.M. (1982) A practical strategy for analysing multispecies distribution patterns. Marine Ecology Progress Series 8, 3752 Google Scholar
Fredriksen, S., Christie, H. and Boström, C. (2004) Deterioration of eelgrass (Zostera marina L.) by destructive grazing by the gastropod Rissoa membranacea (J. Adams). Sarsia 89, 218222.Google Scholar
Fredriksen, S., Hartvig, C. and Sæthre, B.A. (2005) Species richness in macroalgae and macrofauna assemblages on Fucus serratus L. (Phaeophyceae) and Zostera marina L. (Angiospermae) in Skagerrak, Norway. Marine Biology Research 1, 219.Google Scholar
Glémarec, M. and Grall, J. (2000) Les groupes écologiques et zoologiques d'invertébrés marins face aux dégradations de l'environnement côtier. Bulletin de la Société Zoologique de France 125, 3748.Google Scholar
Gotceitas, V., Fraser, S. and Brown, J.A. (1997) Use of eelgrass beds (Zostera marina) by juvenile Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 54, 3061319.Google Scholar
Heck, K.L. Jr and Thoman, T.A. (1981) Experiments on predator–prey interactions in vegetated aquatic habitats. Journal of Experimental Marine Biology and Ecology 3, 125134.Google Scholar
Hemminga, M.A. and Duarte, C.M. (2000) Seagrass ecology. Cambridge: Cambridge University Press, 298 pp.CrossRefGoogle Scholar
Hily, C., Connan, S., Raffin, C. and Wyllie-Echeverria, S. (2004) In vitro experimental assessment of the grazing pressure of two gastropods on Zostera marina L., epiphytic algae. Aquatic Botany 78, 183195 Google Scholar
Jacobs, R.P.W.M. (1980) Effects of the Amoco Cadiz oil spill on the seagrass community at Roscoff with special reference to the benthic infauna. Marine Ecology Progress Series 2, 207212.Google Scholar
Jacobs, R.P.W.M., Hegger, H.H. and Ras-Willems, A. (1983) Seasonal variations in the structure of a Zostera community on tidal flats in the SW Netherlands, with special reference to the benthic fauna. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen (C) 86, 347375.Google Scholar
Jacobs, R.P.W.M. and Huisman, W.H.T. (1982) Macrobenthos of some Zostera beds in the vicinity of Roscoff (France) with special reference to relations with community structure and environmental factors. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen—Biological, Chemical, Geological, Physical and Medical Sciences 85, 335356.Google Scholar
Junoy, J. (1996) La Ría de Foz, comunidades bentónicas. Lugo, Spain: Servicio de Publicaciones de la Diputación Provincial de Lugo, 210 pp.Google Scholar
Kitting, C.L., Fry, B. and Morgan, M.D. (1984) Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows. Oecologia 62, 145149.Google Scholar
Laborda, A.J., Cimadevilla, I., Capdevila, L. and García, J.R. (1997) Distribución de las praderas de Zostera noltii Hornem., 1832 en el litoral del norte de España. Publicaciones especiales del Boletín del Instituto Español de Oceanografía 23, 273282.Google Scholar
Larckum, A.W.D., McComb, A.J. and Shepherd, S.A. (1989) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Amsterdam, The Netherlands: Elsevier.Google Scholar
Lewis, F.G. and Stoner, A.W. (1983) Distribution of macrofauna within seagrass beds: an explanation for patterns of abundance. Bulletin of Marine Science 33, 296304.Google Scholar
López-Jamar, E. and Mejuto, J. (1985) Bentos infaunal en la zona submareal de la Ría de La Coruña. I. Estructura y distribución espacial de las comunidades. Boletín del Instituto Español de Oceanografía 2, 99109.Google Scholar
Lourido, A., Gestoso, L. and Troncoso, J.S. (2006) Assemblages of the molluscan fauna in subtidal soft bottoms of the Ría de Aldán (north-western Spain). Journal of the Marine Biological Association of the United Kingdom 86, 129140.Google Scholar
Luque, Á.A. and Templado, J. (2004) Praderas y bosques marinos de Andalucía. Consejería de Medio Ambiente. Seville, Spain: Junta de Andalucía, 336 pp.Google Scholar
Marina, P., Urra, J., Rueda, J.L. and Salas, C. (2012) Composition and structure of the molluscan assemblage associated with a Cymodocea nodosa bed in south-eastern Spain: seasonal and diel variation. Helgoland Marine Research. DOI: 10.1007/s10152-012-0294-3.Google Scholar
Mercier, P., Chessel, D. and Dolédec, S. (1992) Complete correspondence analysis of an ecological profile data table: a central ordination method. Acta Oecologica 13, 2544.Google Scholar
Mora, J. (1982) Consideraciones generales sobre la macrofauna bentónica de la Ría de Arosa. Oecología Aquatica 6, 4149.Google Scholar
Moreira, J., Quintas, P. and Troncoso, J.S. (2005) Distribution of molluscan fauna in subtidal soft-bottoms of the Ensenada de Baiona (NW Spain). American Malacological Bulletin 20, 7586.Google Scholar
Olabarria, C., Urgorri, V. and Troncoso, J.S. (1997) Distribución y autoecología de la macrofauna infralitoral de la ensenada do Baño (Ría de Ferrol, NO de España). Nova Acta Científica Compostelana 7, 177192.Google Scholar
Olabarria, C., Urgorri, V. and Troncoso, J.S. (1998) An analysis of the community structure of subtidal and intertidal benthic mollusks of the Inlet of Baño (Ría de Ferrol) (northwestern Spain). American Malacological Bulletin 14, 103120.Google Scholar
Orth, R.J. (1977) The importance of sediment stability in seagrass communities. In Coull, B.C. (ed.) Ecology of marine benthos. Columbia, SC: University of South Carolina Press, pp. 281300.Google Scholar
Orth, R.J. and Heck, K.L. Jr (1980) Structural components of eelgrass (Zostera marina) meadows in the lower Chesapeake Bay Fishes. Estuaries 3, 278288.Google Scholar
Orth, R.J., Heck, K.L. and Van Montfrans, J. (1984) Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator–prey relationships. Estuaries 7, 339350.Google Scholar
Orth, R.J., Carruthers, T.J.B., Dennison, W.C., Duarte, C.M., Fourqurean, J.W., Heck, K.L. Jr, Hughes, A.R., Kendrick, G.A., Kenworthy, W.J., Olyarnik, S., Short, F.T., Waycott, M. and Williams, S.L. (2006) A global crisis for seagrass ecosystems. BioScience 56, 987996.Google Scholar
Pérès, J.M. (1958) Essai de classement des communautés benthiques marines du globe. Recueille des Travaux de la Station Marine d'Endoume 22, 2354.Google Scholar
Persson, L.E. (1983) Temporal and spatial variation in coastal macrobenthic community structure, Hanó-Bay (Southern Baltic). Journal of Experimental Marine Biology and Ecology 68, 277293.Google Scholar
Polis, G. and Hurd, S. (1996) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. American Naturalist 147, 396423.Google Scholar
Rasmussen, E. (1973) Systematics and ecology of the Isefjord marine fauna (Denmark). Ophelia 11, 1507.Google Scholar
Reise, K. (1981) High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Helgoländer Wissenschaftliche Meeresuntersuchungen 34, 413425.Google Scholar
Rolán, E., Trigo, J., Otero-Schmitt, J. and Rolán-Álvarez, E. (1985) Especies implantadas lejos de su distribución natural. Thalassas 3, 2936.Google Scholar
Rueda, J.L. and Salas, C. (2008) Molluscs associated with a subtidal Zostera marina L. bed in southern Spain: linking seasonal changes of fauna and environmental variables. Estuarine, Coastal and Shelf Science 79, 157167.Google Scholar
Rueda, J.L., Gofas, S., Urra, J. and Salas, C. (2009a) A highly diverse molluscan assemblage associated with eelgrass beds (Zostera marina L.) in the Alboran Sea: micro-habitat preference, feeding guilds and biogeographical distribution. Scientia Marina 73, 669700.Google Scholar
Rueda, J.L., Marina, P., Urra, J. and Salas, C. (2009b) Changes in the composition and structure of a molluscan assemblage due to eelgrass loss in southern Spain (Alboran Sea). Journal of the Marine Biological Association of the United Kingdom 89, 13191330.Google Scholar
Sheridan, P.F. (2004) Comparison of restored and natural seagrass beds near Corpus Christi, Texas. Estuaries 27, 781792.Google Scholar
Snelgrove, P.V.R. (1998) The biodiversity of macrofaunal organisms in marine sediments. Biodiversity and Conservation 7, 11231132.Google Scholar
Sogard, S. (1989) Colonization of artificial seagrass by fishes and decapod crustaceans: importance of proximity to natural eelgrass. Journal of Experimental Biology and Ecology 133, 1537.Google Scholar
Ter Braak, C. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 11671179.Google Scholar
Ter Braak, C. (1988) A Fortran program for canonical community ordination by partial, detrended, canonical correspondence analysis, principal components analysis and redundancy analysis. Ithaca, New York: Agricultural Mathematics Group, Ministry of Agriculture and Fisheries, 95 pp.Google Scholar
Thayer, G.W., Bjorndal, K.A., Ogden, J.C., Williams, S.L. and Zieman, J.C. (1984) Role of larger herbivores in seagrass communities. Estuaries 7, 351376.CrossRefGoogle Scholar
Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., Calladine, A., Fourqurean, J.W., Heck, K.L. Jr, Hughes, A.R., Kendrick, G.A., Kenworthy, W.J., Short, F.T. and Williams, S.L. (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 1237712381.Google Scholar
Webster, P.J., Rowden, A.A. and Attrill, M.J. (1998) Effect of shoot density on the infaunal macro-invertebrate community within a Zostera marina seagrass bed. Estuarine, Coastal and Shelf Science 47, 351–257.Google Scholar