Skip to main content Accessibility help
×
Home

Diversity of cyanophages infecting the heterocystous filamentous cyanobacterium Nodularia isolated from the brackish Baltic Sea

  • C.A. Jenkins (a1) and P.K. Hayes (a1)

Abstract

A collection of 17 cyanophage isolates able to infect the heterocystous, filamentous cyanobacterium Nodularia spumigena has been established from the Baltic Sea. These cyanophages have been characterized based on their morphology, cross infectivity and genetic structure. Short fragments (450 bp) of the gene encoding the major capsid protein (g23) were amplified and sequenced from several isolates, and the encoded protein was found to be 99% identical across all the N. spumigena-specific cyanophages tested. These results suggest that the Nodularia-specific cyanophages are very closely related. However, these cyanophages were found to be diverse in terms of their morphology and host range. Cyanophages belonging to two families within the order Caudovirales, Myoviridae and Siphoviridae, were included in the collection of isolates. The cyanophage particles are large in comparison with cyanophages previously isolated from the marine environment, with the largest capsid measuring 127×122×888 nm. Host ranges of the cyanophage isolates varied, some being able to infect up to five genotypically distinct strains of Nodularia spumigena, while others were very specific, infecting only one strain. We conclude that Nodularia-specific cyanophages form a diverse community in surface waters during summer and autumn months and that they may play a role both in the transfer of genetic information between Nodularia lineages and in promoting changes in the genetic structure of the host population.

Copyright

Corresponding author

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed