Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T01:51:10.742Z Has data issue: false hasContentIssue false

Dynamics of Egg Production in Mediterranean Populations of the Terebellid Polychaete Eupolymnia Nebulosa

Published online by Cambridge University Press:  11 May 2009

Christian Nozais
Affiliation:
Observatoire Océanologique de Banyuls, Université Pierre et Marie Curie, CNRS URA 117, BP 44, F-66650 Banyuls-sur-mer, France.
Daniel Martin
Affiliation:
Observatoire Océanologique de Banyuls, Université Pierre et Marie Curie, CNRS URA 117, BP 44, F-66650 Banyuls-sur-mer, France. Centre d'Esrudis Avançats de Blanes, 17300 Blanes-Girona, Spain.
Jae-Hoon Cha
Affiliation:
Observatoire Océanologique de Banyuls, Université Pierre et Marie Curie, CNRS URA 117, BP 44, F-66650 Banyuls-sur-mer, France. Korean Ocean Research and Development Institute, Ansan PO Box 29 Seoul, 425–600 Korea
Jean Claude Duchêne
Affiliation:
Observatoire Océanologique de Banyuls, Université Pierre et Marie Curie, CNRS URA 117, BP 44, F-66650 Banyuls-sur-mer, France.
François Charles
Affiliation:
Observatoire Océanologique de Banyuls, Université Pierre et Marie Curie, CNRS URA 117, BP 44, F-66650 Banyuls-sur-mer, France.
Antoine Grémare
Affiliation:
Observatoire Océanologique de Banyuls, Université Pierre et Marie Curie, CNRS URA 117, BP 44, F-66650 Banyuls-sur-mer, France.

Extract

The dynamics of egg production by a Mediterranean population of the terebellid polychaete Eupolymnia nebulosa was assessed both in the field and in the laboratory between 1992 and 1994. Our results confirm the occurrence of several peaks of jelly mass production at the population level. They show that such peaks result from the production of several broods per individual female (the number of produced broods increasing with female size). Jelly masses produced at the end of the breeding season tend to be smaller and to contain fewer eggs than those produced at the beginning of the breeding season. Worms produced significantly larger jelly masses in 1994 than in 1993 and 1992, without noticeable change in corresponding fecundities. The computation of temporal changes in eggs produced per unit of surface area in the cove of Paulilles shows that most of the eggs are produced during the first two peaks of jelly mass production. These results are discussed relative to the different hypotheses invoked to account for the occurrence of several spawnings in Mediterranean populations of E. nebulosa. It is concluded that no single explanation, such as the allometry constraint hypothesis or heterogeneity in oogenesis rates, can be retained.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnoux, S. & Fraunié, P., 1994. Modélisation numérique de la circulation en baie de Banyuls. Rapport du Laboratoire de Sondages Electromagnetiques de l'Environnement Terrestre. Université de Toulon et du Var, 47 pp.Google Scholar
Bhaud, M., 1988a. Influence of temperature and food supply on development of Eupolymnia nebulosa (Montagu, 1818) (Polychaeta: Terebellidae). Journal of Experimental Marine Biology and Ecology, 118, 103113.CrossRefGoogle Scholar
Bhaud, M., 1988b. Change in setal pattern during early development of Eupolymnia nebulosa (Polychaeta: Terebellidae) grown in simulated natural conditions. Journal of Marine Biology Association of the United Kingdom, 68, 677687.CrossRefGoogle Scholar
Bhaud, M., Cha, J.H., Duchene, J.C., Martin, D. & Nozais, C., 1995a. Larval biology and benthic recruitment: new ideas on the role of egg-masses and modelling life-cycle regulation. Scientia Marina, 59, 103117.Google Scholar
Bhaud, M., Cha, J.H., Duchêne, J.C. & Nozais, C., 1995b. Influence of temperature on the marine fauna: what can be expected from a climatic change? Journal of Thermal Biology, 20, 91104.CrossRefGoogle Scholar
Bhaud, M. & Grémare, A., 1988. Larval development of the terebellid polychaete, Eupolymnia nebulosa (Montagu, 1818) in the Mediterranean Sea. Zoologica Scripta, 17, 347356.CrossRefGoogle Scholar
Bhaud, M. & Grémare, A., 1991. Reproductive cycle of Eupolymnia nebulosa (Polychaeta: Terebellidae) in the western Mediterranean Sea. Ophelia, 5, 295304.Google Scholar
Bhaud, M., Gremare, A., Lang, F. & Retière, C., 1987. Etude comparée des caractères reproductifs du terebellien Eupolymnia nebulosa (Montagu), Annélide Polychète, en 2 points de son aire géographique. Comptes Rendus de l'Académie des Sciences de Paris, 304, 119122.Google Scholar
Butman, C.A., 1989. Sediment-trap experiments on the importance of hydrodynamical processes in distributing settling invertebrate larvae in near-bottom waters. Journal of Experimental Marine Biology and Ecology, 134, 37—88.CrossRefGoogle Scholar
Cha, J.H., 1994. Analyse expérimentale du recrutement benthique chez Eupolymnia nebulosa (Annélide Polychète Terebellidae). Thèse de Doctorat de l'Université de Paris 6.Google Scholar
Chaffee, C. & Strathmann, R.R., 1984. Constraints on egg masses. I. Retarded development within thick egg masses. Journal of Experimental Marine Biology and Ecology, 84, 7383.CrossRefGoogle Scholar
Chapman, G., 1965. The egg cocoons of Scoloplos armiger O.F. Müller. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 128, 189197.CrossRefGoogle Scholar
Daly, J.M., 1972. The maturation and breeding biology of Harmothoe imbricata (L.) Polychaeta, Polynoidae. Marine Biology, 12, 5366.CrossRefGoogle Scholar
Duchêne, J.C., 1991. Growth rate, fecundity and spawning in two subantarctic populations of Thelepus setosus (Quatrefages) (Polychaeta: Terebellidae). Ophelia, 5, 313320.Google Scholar
Duchêne, J.C. & Nozais, C., 1992. Etude de l'émission des stades larvaires précoces d'Eupolymnia nebulosa (Polychaeta: Terebellidae). Annales de l'Institut Océanographique, 68, 1524.Google Scholar
Duchêne, J.C. & Nozais, C., 1994. Light influence on larval emission and vertical swimming in the terebellid worm Eupolymnia nebulosa (Montagu, 1818). Memoires du Muséum National d'Histoire Naturelle, 162, 405412.Google Scholar
Eckelbarger, K.J., 1974. Population biology and larval development of the terebellid polychaete Nicolea zostericola. Marine Biology, 27, 101113.CrossRefGoogle Scholar
Gibbs, P.E., 1968. Observations on the population of Scoloplos armiger at Whitstable. Journal of the Marine Biological Association of the United Kingdom, 48, 225254.CrossRefGoogle Scholar
Grémare, A., 1986. A comparative study of reproductive energetics in two populations of the terebellid polychaete Eupolymnia nebulosa Montagu with different reproductive modes. Journal of Experimental Marine Biology and Ecology, 96, 287302.CrossRefGoogle Scholar
Grémare, A., 1988. Aspects quantitatifs de la reproduction chez quelques annélides polychètes: intérêt et perspectives. Thèse de Doctorat de l'Université de Paris 6.Google Scholar
Grémare, A. & Olive, P.J.W., 1986. A preliminary study of fecundity and reproductive effort in two polychaetous annelids with contrasting reproductive strategies. International Journal of Invertebrate Reproduction and Development, 9, 116.CrossRefGoogle Scholar
Hunter, T. & Vogel, S., 1986. Spinning embryos enhance diffusion through gelatinous egg masses. Journal of Experimental Marine Biology and Ecology, 96, 303308.CrossRefGoogle Scholar
Lang, F., 1986. Peuplements des fonds durs du bassin maritime de la Rance; rôle fonctionnel de Eupolymnia nebulosa (Annélide Polychète). Thèse de Doctorat de l'Université de Rennes I.Google Scholar
Lenaers, G. & Bhaud, M., 1992. Molecular phylogeny of some polychaete annelids: an initial approach to the Atlantic-Mediterranean speciation problem. Journal of Molecular Evolution, 35, 429435.CrossRefGoogle Scholar
Mann, R. & Lazier, J.R.N., 1991. Dynamics of marine ecosystems. Biological-physical interactions in the oceans. London: Blackwell Scientific Publications.Google Scholar
McHugh, D., 1993. A comparative study of reproduction and development in the polychaete family Terebellidae. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 185, 153167.CrossRefGoogle ScholarPubMed
Nozais, C., 1995. Impact des processus biologiques et des parametres physiques sur la présence planctonique des larves d'invertébrés benthiques et sur leur recrutement en baie de Banyuls. Thèse de Doctorat de l'Université de Paris 6.Google Scholar
Nozais, C. & Duchene, J.C., 1996. Larval buoyancy and release from terebellid egg masses. Journal of Experimental Marine Biology and Ecology, 203, 209227.CrossRefGoogle Scholar
Pechenik, J. A., 1979. Role of encapsulation in invertebrate life histories. American Naturalist, 114, 859870.Google Scholar
Richards, S.A., Possingham, H.P. & Noye, B.J., 1995. Larval dispersion along a straight coast with tidal currents: complex distribution patterns from a simple model. Marine Ecology Progress Series, 122, 5971.CrossRefGoogle Scholar
Sinclair, M., 1988. Marine populations. An essay on population regulation and speciation. Seattle: University of Washington Press. [Washington Sea Grant Monograph Series.]Google Scholar
Strathmann, R.R. & Chaffee, C., 1984. Constraints on egg masses. II. Effect of spacing size, and number of eggs on ventilation of masses of embryos in jelly, adherent groups, or thin-walled capsules. Journal of Experimental Marine Biology and Ecology, 84, 8593.CrossRefGoogle Scholar
Strathmann, R.R. & Strathmann, M.F., 1995. Oxygen supply and limits on aggregation of embryos. Journal of the Marine Biological Association of the United Kingdom, 75, 413—428.CrossRefGoogle Scholar
Thorson, G., 1950. Reproductive and larval ecology of marine bottom invertebrates. Biological Reviews, 25, 145.CrossRefGoogle ScholarPubMed
Verdier-Bonnet, C., 1996. Modélisation des écoulements stratifiés côtiers à surface Ware et paramétrisation de la turbulence. Application à la dissémination larvaire. Thèse de Doctorat de l'Université Aix Marseille II.Google Scholar