Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T15:44:06.866Z Has data issue: false hasContentIssue false

Molecular evolution and diversification of the vestimentiferan tube worms

Published online by Cambridge University Press:  11 May 2009

Nic A. Williams
Affiliation:
*Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS
David R. Dixon
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB
Eve C. Southward
Affiliation:
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB
Peter W. H. Holland*
Affiliation:
*Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS
*
Author for correspondence

Extract

The Vestimentifera, or deep-sea tube worms, comprise an ecologically and anatomically unusual group of marine invertebrates, with poorly understood biogeography, ecology, phylogenetic affinities and evolutionary radiation. To gain insight into evolutionary diversification within the group, we have used a molecular biological approach. We report the cloning of a region of 28S ribosomal DNA from representatives of five vestimentiferan genera plus, for comparison, a polychaete and a perviate pogonophore. Phylogenetic analyses using these DNA sequences confirm that Ridgeia and Tevnia are closely related genera. The analyses also lead us to propose the hypothesis that the earliest vestimentiferan lineage to diverge gave rise to the genus Lamellibrachia only. In addition, our comparative DNA sequence data now provide a means to use molecular methods for identification of deep-sea tube worms; we employed this approach to demonstrate that the first vestimentiferan specimen from the eastern Atlantic Ocean belongs to the genus Lamellibrachia. DNA-based identification should have wide applications in the study of vestimentiferan biogeography and ecology.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Black, M. B., 1991. Genetic (allozyme) variation in Vestimentifera (Ridgeia spp.) from hydrothermal vents of the Juan de Fuca Ridge (northeast Pacific Ocean). MSc thesis, University of Victoria, Canada.Google Scholar
Bucklin, A., 1988. Allozymic variability of Riftia pachyptila populations from the Galapagos Rift and 21°N hydrothermal vents. Deep-Sea Research, 35, 17591768.CrossRefGoogle Scholar
Cary, S. C., Felbeck, H. & Holland, N. D., 1989. Observations on the reproductive biology of the hydrothermal vent tube worm Riftia pachyptila. Marine Ecology Progress Series, 52, 8994.CrossRefGoogle Scholar
Dando, P. R., Southward, A. J., Southward, E. C., Dixon, D. R., Crawford, A. & Crawford, M., 1992. Shipwrecked tube worms. Nature, London, 356, 667.CrossRefGoogle Scholar
Distel, D. L., Lane, D. J., Olsen, G. J., Giovannoni, S. J., Pace, B., Pace, N. R., Stahl, D. A. & Felbeck, H., 1988. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16SrRNA sequences. Journal of Bacteriology, 170, 25062510.CrossRefGoogle Scholar
Felsenstein, J., 1991. PHYLIP (Phylogeny inference package) Version 3.4. Seattle: University of Washington.Google Scholar
Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R. & Raff, R. A., 1988. Molecular phylogeny of the animal kingdom. Science, New York, 239, 748753.CrossRefGoogle ScholarPubMed
Fustec, A., Desbruyères, D. & Juniper, S. K., 1987. Deep-sea hydrothermal vent communities at 13°N on the east Pacific Rise: microdistribution and temporal variations. Biological Oceanography, 4, 121164.Google Scholar
Grassle, J. F., 1986. The ecology of deep-sea hydrothermal vent communities. Advances in Marine Biology, 23, 301362.CrossRefGoogle Scholar
Gutell, R. R. & Fox, G. E., 1988. Compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Research, 16, 175269.CrossRefGoogle Scholar
Hancock, J. M., Tautz, D. & Dover, G. A., 1988. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. Molecular Biology and Evolution, 5, 393414.Google ScholarPubMed
Higgins, D. G. & Sharp, P. M., 1988. CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene, 73, 237244.CrossRefGoogle ScholarPubMed
Hillis, D. M. & Dixon, M. T., 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66, 411453.CrossRefGoogle ScholarPubMed
Holland, P. W. H., 1993. Cloning genes using PCR. In Essential developmental biology: a practical approach (ed. Stem, C. D. and Holland, P. W. H.). Oxford: IRL Press. (In Press.)Google Scholar
Jones, M. L., 1981. Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora). Proceedings of the Biological Society of Washington, 93, 12951313.Google Scholar
Jones, M. L., 1985. On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Bulletin of the Biological Society of Washington, 6, 117158.Google Scholar
Juniper, S. K., Tunnicliffe, V. & Southward, E. C., 1992. Hydrothermal vents in turbidite sediments on a northeast Pacific spreading centre: organisms and substratum at an ocean drilling site. Canadian Journal of Zoology, 70, 17921809.CrossRefGoogle Scholar
Kishino, H. & Hasegawa, M., 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order of the Hominoidea. journal of Molecular Evolution, 29, 170179.CrossRefGoogle ScholarPubMed
Kocher, T. D. & White, T. J., 1989. Evolutionary analysis via PCR. In PCR technology (ed. Erlich, H. A.), pp. 137147. New York: Stockton.CrossRefGoogle Scholar
McDonald, I. R., Boland, G. S., Baker, J. S., Brooks, J. M., Kennicutt, M. C. & Bidigare, R. R., 1989. Gulf of Mexico hydrocarbon seep communities. II. Spatial distribution of seep organisms and hydrocarbons at Bush Hill. Marine Biology, 101, 235247.CrossRefGoogle Scholar
Saitou, N. & Imanishi, T., 1989. Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbour-joining methods of phylo-genetic tree construction in obtaining the correct tree. Molecular Biology and Evolution, 6, 514525.Google Scholar
Southward, A. J., 1991. Effect of temperature on autotrophic enzyme activity of bacteria symbiotic in clams and tube worms. Kieler Meeresforschungen Sonderhefte, 8, 245251.Google Scholar
Southward, A. J., Southward, E. C., Brattegard, T. & Bakke, T., 1979. Further experiments on the value of dissolved organic matter as food for Siboglinum fiordicum (Pogonophora). Journal of the Marine Biological Association of the United Kingdom, 59, 133148.CrossRefGoogle Scholar
Southward, E. C., 1988. Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 68, 465487.CrossRefGoogle Scholar
Southward, E. C., 1991. Three new species of Pogonophora, including two vestimentiferans, from hydrothermal sites in the Lau Back-arc Basin (southwest Pacific Ocean). Journal of Natural History, 25, 859881.CrossRefGoogle Scholar
Telford, M. J. & Holland, P. W. H., 1993. The phylogenetic affinities of the chaetognaths: a molecular analysis. Molecular Biology and Evolution, in press.Google Scholar
Tunnicliffe, V., 1991. The biology of hydrothermal vents: ecology and evolution. Oceanography and Marine Biology. Annual Review. London, 29, 319407.Google Scholar
Webb, M., 1969. Lamellibrachia barhami gen. nov., sp. nov., (Pogonophora), from the northeast Pacific. Bulletin of Marine Science, 19, 1847.Google Scholar
Willmer, P. G. & Holland, P. W. H., 1991. Modern approaches to metazoan relationships. Journal of Zoology, 224, 689694.CrossRefGoogle Scholar