Skip to main content
×
×
Home

Non-indigenous amphipods and mysids in coastal food webs of eastern Baltic Sea estuaries

  • Nadezhda A. Berezina (a1), Arturas Razinkovas-Baziukas (a2) and Alexei V. Tiunov (a3)
Abstract

The study analyses the role of non-indigenous invertebrates in the food webs of two eutrophic brackish estuarine ecosystems of the Baltic Sea: the Neva River estuary and the Curonian Lagoon, with the aim of clarifying several questions such as what trophic levels were occupied by newly established species (mainly amphipods and mysids) and whether they can affect the native benthic invertebrates as a result of their possible carnivorous nature. Stable isotope analysis (δ15N values) and gut contents analysis of field-collected specimens were used to estimate trophic level and trophic links of the newly established malacostracan crustaceans, while their consumption rates when feeding as carnivores were measured experimentally. The δ15N analysis allocated four trophic levels (TL) in the coastal food webs of both studied ecosystems with the lowest δ15N (2–4‰) for detritus and algae and the highest for fish (12–14‰). Through their high abundance, non-indigenous crustaceans (Pontogammarus robustoides, Gmelinoides fasciatus, Obessogammarus crassus, Gammarus tigrinus, Limnomysis benedeni and Paramysis lacustris) have become important members of food chains of the studied ecosystems. Their trophic position varied significantly within species during ontogenesis. This suggests that they turned from being typically detritivores/plantivorous (TL 2–2.4) at juvenile stages to omnivores (2.5–3) or to carnivores (>3) as adults. Assessment of the predation pressure by the adult amphipods on other coexisting invertebrates (in the example of the Neva Estuary) showed a low or medium impact, depending on species of predator and productivity of its potential prey organisms.

Copyright
Corresponding author
Correspondence should be addressed to: N. A. Berezina, Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St.-Petersburg 199034, Russia email: nadezhda.berezina@zin.ru
References
Hide All
Ahlbeck, I., Hansson, S. and Hjerne, O. (2012) Evaluating fish diet analysis methods by individual-based modeling. Canadian Journal of Fisheries and Aquatic Sciences 69, 11841201.
Arbaciauskas, K. (2008) Amphipods of the Nemunas River and the Curonian Lagoon, the Baltic Sea basin: where and which native freshwater amphipods persist? Acta Zoologica Lituanica 18, 1016.
Arbaciauskas, K., Lesutiene, J. and Gasiunaite, Z.R. (2013) Feeding strategies and elemental composition in Ponto-Caspian peracaridans from contrasting environments: can stoichiometric plasticity promote invasion success? Freshwater Biology 58, 10521068.
Bacela-Spychalska, K. and Van der Velde, G. (2013) There is more than one ‘killer shrimp’: trophic positions and predatory abilities of invasive amphipods of Ponto-Caspian origin. Freshwater Biology 58, 730741.
Berezina, N.A. (2007a) Invasions of alien amphipods (Crustacea: Amphipoda) in aquatic ecosystems of North-Western Russia: pathways and consequences. Hydrobiologia 590, 1529.
Berezina, N.A. (2007b) Food spectra and consumption rates of four amphipod species from the North-West of Russia. Fundamental and Applied Limnology /Archiv für Hydrobiologie 168, 317326.
Berezina, N.A. (2008) Assessment of predation impact by invasive amphipods in easternmost Baltic Sea. Neobiota 7, 211218.
Berezina, N., Golubkov, S. and Gubelit, J. (2005) Grazing effects of alien amphipods on macroalgae in the littoral zone of the Neva Estuary (eastern Gulf of Finland, Baltic Sea). Oceanological and Hydrobiological Studies 34, 6382.
Berezina, N.A., Petryashev, V.V., Razinkovas, A. and Lesutiene, J. (2011) Alien malacostraca in the eastern Baltic Sea: pathways and consequences. In Galil, B.S., Clark, P.F. and Carlton, J.T. (eds) In the wrong place – alien marine crustaceans: distribution, biology and impacts. Dordrecht: Springer, pp. 301322.
Bollache, L., Dick, J.T.A., Farnsworth, K.D. and Montgomery, W.I. (2008) Comparison of the functional responses of invasive and native amphipods. Biology Letters 4, 166169.
Bresciani, M., Giardino, C., Stroppiana, D., Pilkaitytė, R., Zilius, M., Bartoli, M. and Razinkovas, A. (2012) Retrospective analysis of spatial and temporal variability of chlorophyll-a in the Curonian Lagoon. Journal of Coastal Conservation 16, 511519.
Cruz-Rivera, E. and Hay, M.E. (2001) Macroalgal traits and the feeding and fitness of a herbivorous amphipod: the roles of selectivity, mixing, and compensation. Marine Ecology Progress Series 218, 249266.
Daunys, D. and Zettler, M.L. (2006) Invasion of the North American amphipod (Gammarus tigrinus Sexton, 1939) into the Curonian Lagoon, south-eastern Baltic Sea. Acta Zoologica Lituanica 16, 2026.
Devin, S., Bollache, L., Noël, P.Y. and Beisel, J.N. (2005) Patterns of biological invasions in French freshwater systems by non-indigenous macroinvertebrates. Hydrobiologia 551, 137146.
Dick, J.T.A., Jonson, M.P., McCambridge, S., Johnson, J., Carson, V.E.E., Kelly, D.W. and MacNeil, C. (2005) Predatory nature of the littoral amphipod Echinogammarus marinus: gut content analysis and effects of alternative food and substrate heterogeneity. Marine Ecology Progress Series 291, 151158.
Dick, J.T.A. and Platvoet, D. (1996) Intraguild predation and species exclusions in amphipods: the interaction of behavior, physiology and environment. Freshwater Biology 36, 375383.
Dick, J.T.A., Platvoet, D. and Kelly, D.W. (2002) Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda). Canadian Journal of Fisheries and Aquatic Sciences 59, 10781084.
Fink, P., Kottsieper, A., Heynen, M. and Borcherding, J. (2012) Selective zooplanktivory of an invasive Ponto-Caspian mysid and possible consequences for the zooplankton community structure of invaded habitats. Aquatic Sciences 74, 191202.
Fry, B. (1983) Fish and shrimp migrations in the northern Gulf of Mexico analyzed using stable C, N and S isotope ratios. Fishery Bulletin 81, 789801.
Gasiunas, I.I. (1972) Obogaschenie kormovoj bazy ryb vodoemov Litvy akklimatizirovannymi rakoobraznymi Kaspijskogo kompleksa [Enrichment of feeding base for fish of water bodies of Lithuania by acclimatized crustaceans from the Caspian Sea complex]. In Voprosy razvedenija ryb i rakoobraznykh v vodoemakh Litvy In Virbitskas, J. (ed.) Voprosy razvedeniya ryb i rakoobraznykh v vodoemakh Litvy. Vilnius: Publishing House Mintis, pp. 5768. [In Russian]
Golubkov, S.M. (2000) Functional ecology of insect larvae. Saint-Petersburg: Zoological Institute of the Russian Academy of Sciences Publ. 295 pp. [In Russian]
Golubkov, M.S. (2009) Phytoplankton primary production in the Neva Estuary at the turn of the 21st century. Inland Water Biology 2, 312318.
Gubelit, J.I. and Berezina, N.A. (2010) The causes and consequences of algal blooms: the Cladophora glomerata bloom and the Neva estuary (eastern Baltic Sea). Marine Pollution Bulletin 61, 183188.
Hyslop, E.J. (1980) Stomach contents analysis – a review of methods and their application. Journal of Fish Biology 17, 411429.
Jankauskiene, R. (2003) Selective feeding of Ponto-Caspian higher crustaceans and fish larvae in the littoral zone of the Curonian Lagoon. Ekologija 2, 1927. [In Lithuanian]
Jennings, S., Pinnegar, J.K., Polunin, N.V.C. and Warr, K.J. (2002) Linking size-based and trophic analyses of benthic community structure. Marine Ecology Progress Series 22, 7785.
Kelly, D.W., Bailey, R.J., MacNeil, C., Dick, J.T.A. and McDonald, R.A. (2006) Invasion by the amphipod Gammarus pulex alters community, composition of native freshwater macroinvertebrates. Diversity and Distributions 12, 525534.
Kelly, D.W. and Dick, J.T.A., (2005) Effects of environment and an introduced invertebrate species on the structure of benthic macroinvertebrate species at the catchment level. Archiv für Hydrobiologie 164, 6988.
Lauringson, V. and Kotta, J. (2006) Influence of the thin drift algal mats on the distribution of macrozoobenthos in Koiguste Bay, NE Baltic Sea. Hydrobiologia 554, 97105.
Lesutiene, J. (2009) Food web of the Curonian Lagoon: organic matter sources and feeding of mysids. Doctoral thesis. Klaipeda University, Klaipeda.
Lesutiene, J., Gorokhova, E., Gasiunaite, Z.R. and Razinkovas, R. (2007) Isotopic evidence for zooplankton as an important food source for the mysid Paramysis lacustris in the Curonian Lagoon, the South-Eastern Baltic Sea. Estuarine, Coastal and Shelf Science 73, 7380.
MacNeil, C., Dick, J.T.A. and Elwood, R.W. (1997) The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept. Biological Reviews of the Cambridge Philosophical Society 72, 349364.
MacNeil, C., Elwood, R.W. and Dick, J.T.A. (1999) Predator-prey interactions between brown trout Salmo trutta and native and introduced amphipods: their implications for fish diets. Ecography 22, 686696.
McGlathery, K.J., Sundback, K. and Anderson, I.C. (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Marine Ecology Progress Series 348, 118.
Michener, R. and Lajtha, K. (2007) Stable isotopes in ecology and environmental science, 2nd edition. Oxford: Blackwell.
Peterson, B.J. and Fry, B. (1987) Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293320.
Pilkaityte, R. and Razinkovas, A. (2006) Factors controlling phytoplankton blooms in a temperate estuary: nutrient limitation and physical forcing. Hydrobiologia 555, 4148.
Post, D. (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703718.
Schiewer, U. (2008) Ecology of Baltic coastal waters. Ecological Studies 197. Berlin: Springer-Verlag.
Urbakh, V.Y. (1964) Biometric methods. Moscow: Nauka, 415 pp. [In Russian]
Zilius, M., Bartoli, M., Daunys, D., Pilkaityte, R. and Razinkovas, A. (2012) Patterns of benthic oxygen uptake in a hypertrophic lagoon: spatial variability and controlling factors. Hydrobiologia 699, 8598.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Marine Biological Association of the United Kingdom
  • ISSN: 0025-3154
  • EISSN: 1469-7769
  • URL: /core/journals/journal-of-the-marine-biological-association-of-the-united-kingdom
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed