Skip to main content Accessibility help
×
Home

Stylet (vestigial shell) size in Octopus vulgaris (Cephalopoda) hatchlings used to determine stylet nucleus in adults

  • Sílvia Lourenço (a1) (a2) (a3), Ana Moreno (a2), Luís Narciso (a1), João Pereira (a2), Rui Rosa (a1) and Ángel F. González (a3)...

Abstract

The estimation of age and growth of cephalopod stocks is a key issue for their sustainable management. Recently, several studies have successfully validated the daily deposition of growth rings in the vestigial shell or stylets of several octopus species. Octopus vulgaris eggs were incubated at two different temperatures, 18 and 22°C, until hatching to determine stylet size at hatching and assess the effect of temperature in the stylet dimensions. The 3-day-old hatchlings were sectioned transversally and 6 μm sections were stained to enhance the stylet position and visibility. The sections were observed under transmitted light microscopy at a magnification of 1000×, and the stylets identified as blue/green structures inside the mantle–funnel retractor muscle. The transversal sections of the whole paralarvae allowed the diameter of the embryonic stylet of an octopus species to be measured for the first time. The mean stylet diameter in 3-day-old paralarvae is 3.99 μm independently of the thermal conditions. Moreover, significant differences in stylet size between captive and wild paralarvae were observed; the latter showed significantly larger stylets, an indication that they are over 3 days old. Our results also indicate that the stylet nucleus is much smaller than previously thought based on measurements in stylets of juveniles and adults.

Copyright

Corresponding author

Correspondence should be addressed to: S. Lourenço, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa Campo Grande, 1749-016 Lisboa, Portugal email: salourenco2@gmail.com

References

Hide All
Barratt, I.M. and Allcock, A.L. (2010) Ageing octopods from stylets: development of a technique for permanent preparations. ICES Journal of Marine Science 67, 14521457.
Bizikov, V.A. (2004) The shell in Vampyropoda (Cephalopoda): morphology, functional role and evolution. Ruthenica suppl. 3, 188.
Budelmann, B.U., Schipp, R. and Boletzky, V.S. (1997) Cephalopoda. In Harrison, F.W. and Kohn, A.J. (eds) Microscopic anatomy of invertebrates. Volume 6A: Mollusca II. Chichester: Wiley, pp. 119414.
Campana, S.E. (1992) Measurement and interpretation of the microstructure of fish otoliths. In Stevenson, D. and Campana, S.E. (eds) Otolith microstructure examination and analysis. Canadian Special Publication of Fisheries and Aquatic Sciences 117, 5972.
Campana, S.E. (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197242.
Canali, E., Ponte, G., Belcari, P., Rocha, F. and Fiorito, G. (2011) Evaluating age in Octopus vulgaris: estimation, validation and seasonal differences. Marine Ecology Progress Series 441, 141149.
Domain, F., Jouffre, D. and Caveriviére, A. (2000) Growth of Octopus vulgaris from tagging in Senegalese waters. Journal of the Marine Biological Association of the United Kingdom 80, 699705.
Doubleday, Z., Semmens, J.M., Pecl, G. and Jackson, G. (2006) Assessing the validity of stylets as ageing tools in Octopus pallidus. Journal of Experimental Marine Biology and Ecology 338, 3542.
Doubleday, Z.A., White, J., Pecl, G.T. and Semmens, J.M. (2011) Age determination in merobenthic octopuses using stylet increment analysis: assessing future challenges using Macroctopus maorum as a model. ICES Journal of Marine Science 68, 20592063.
Goto, T. (2005) Examination of different preservative for Todarodes pacificus paralarvae fixed with borax-buffered formalin-seawater solution. Phuket Marine Biological Center Research Bulletin 6, 213219.
Hermosilla, C.A., Rocha, F., Fiorito, G., González, A.F. and Guerra, A. (2010) Age validation in common octopus Octopus vulgaris using stylet increment analysis. ICES: Journal of Marine Science 67, 14581463.
Herwig, J.N., Depczynski, M., Roberts, J.D., Semmens, J.M., Gagliano, M. and Heyward, A.J. (2012) Using age-based life history data to investigate the life cycle and vulnerability of Octopus cyanea. PLoS ONE 7, e43679.
INE (2013). Statistics Portugal. http://www.ine.pt.
Jones, L. (2002) Connective tissues and stains. In Bancroft, J.D. and Gamble, M. (eds) Theory and practice of histological techniques, 6th edn. Edinburgh: Churchill Livingstone, pp. 139162.
Katsanevakis, S. and Verriopoulos, G. (2006) Seasonal population dynamics of Octopus vulgaris in the eastern Mediterranean. ICES Journal of Marine Science 63, 151160.
Leporati, S.C., Semmens, J.M. and Pecl, G. (2008) Determining the age and growth of wild octopus using stylet increment analysis. Marine Ecology Progress Series 367, 213222.
Lourenço, S. (2014) Ecology of the common octopus Octopus vulgaris (Cuvier, 1797) in the Atlantic Iberian Coast: life cycle strategies under different oceanographic regimes. PhD Thesis, Faculdade de Ciencias da Universidade de Lisboa, Lisboa, Portugal.
Mangold, K. (1983) Octopus vulgaris. In Boyle, P. (ed) Cephalopod life cycle: species accounts. Volume 1. London: Academic Press, pp. 335363.
Naef, A. (1928) Die Cephalopoden. Embryologie. Fauna Flora Golf Neapel 35, 1–357. English translation by Boletzky, S. V. 2001. The Cephalopoda-Embryology. Washington, DC: Smithsonian Institution Press.
Otero, J., Rocha, F., González, A.F., Garcia, J. and Guerra, A. (2005) Modeling artisanal coastal fisheries of Galicia (NW Spain) based on data obtained from fishers: the case of Octopus vulgaris. Scientia Marina 69, 577585.
Panfili, J., de Pontual, H., Toradec, H. and Wright, P.J. (2002). Manual of fish sclerochronology. Brest: IFREMER–IRD.
Perales-Raya, C., Bartolomé, A., García-Santamaría, M.T., Pascual-Alayón, P. and Almansa, E. (2010) Age estimation obtained from analysis of octopus (Octopus vulgaris Cuvier, 1797) beaks: improvements and comparisons. Fisheries Research 106, 171176.
Repolho, T., Baptista, M., Pimentel, M.S., Dionisio, G., Trübenbach, K., Lopes, V.M., Lopes, A.R., Calado, R., Diniz, M. and Rosa, R. (2014). Developmental and physiological challenges of octopus (Octopus vulgaris) early life stages under ocean warming. Journal of Comparative Physiology B 184, 5564.
Roura, A. (2013) Ecology of planktonic cephalopod paralarvae in coastal upwelling systems. PhD Thesis, Universidade de Vigo, Vigo, Spain.
Semmens, J., Doubleday, Z., Hoyle, K. and Pecl, G. (2011) A multilevel approach to examining cephalopod growth using Octopus pallidus as a model. Journal of Experimental Biology 214, 27992807.
Sousa Reis, C. and Fernandes, R. (2002) Growth observations on Octopus vulgaris Cuvier, 1797 from the Portuguese waters: growth lines in the vestigial shell as possible tools for age determination. Bulletin of Marine Science 71, 10991103.
Vecchione, M. (1991) A method for examining the structure and contents of digestive tract in paralarval squids. Bulletin of Marine Science 49, 300308.
Villanueva, R. (1995) Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement. Canadian Journal of Fisheries and Aquatic Science 52, 26392650.
Villanueva, R. and Norman, M.D. (2008) Biology of the planktonic stages of benthic octopuses. Oceanography and Marine Biology – An Annual Review 46, 105202.

Keywords

Related content

Powered by UNSILO

Stylet (vestigial shell) size in Octopus vulgaris (Cephalopoda) hatchlings used to determine stylet nucleus in adults

  • Sílvia Lourenço (a1) (a2) (a3), Ana Moreno (a2), Luís Narciso (a1), João Pereira (a2), Rui Rosa (a1) and Ángel F. González (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.