Skip to main content Accessibility help

The utility of wax replicas as a measure of crab attack frequency in the rocky intertidal

  • Carrie L. Tyler (a1), E.S. Stafford (a2) and L.R. Leighton (a2)

Crabs are thought to play a vital role in structuring gastropod populations. Studies quantifying the frequencies with which crabs attack gastropods in natural settings are, however, scarce. Although a wide variety of techniques exist with which predator–prey interactions can be investigated (e.g. laboratory experiments, exclusion caging, tethering and population surveys), there is a need for methods that can provide large amounts of quantitative data, particularly documenting the frequency with which crabs attack gastropods. This study examines the utility of using wax replicas of gastropods to determine crab attack frequencies. Replicas of Chlorostoma funebralis, Nucella ostrina and Nucella lamellosa were bolted to mesh screens and deployed in the rocky intertidal. Crabs attacked wax replicas of gastropods, leaving characteristic marks in the wax. In most cases, the appendage used in the attack could be identified from the marks (i.e. chelae vs walking legs). The effectiveness of this technique was verified using surveys of repair scar frequencies of the gastropod populations; patterns in attack frequency, determined from the number of marked wax replicas, were consistent with those of repair frequency, in that both were greater at the wave protected, quiet water locality. This study confirms the value of wax replicas in investigations of crab predation to determine the frequency and type of attack, and illustrates the potential of this method for quantifying predation intensity. The development of techniques that quantify the magnitude and exact nature of the effects of crab predation on intertidal communities is pivotal, given the intensity of commercial fishing of some species of crabs.

Corresponding author
Correspondence should be addressed to: C.L. Tyler, Florida Museum of Natural History, Museum Road, PO Box 117800, Gainesville, FL 32611-7800, USA email:
Hide All
Abbott, D.P. and Haderlie, E.C. (1980) Prosobranchia: marine snails. In Morris, R.H., Abbott, D.P. and Haderlie, E.C. (eds) Intertidal invertebrates of California. Stanford, CA: Stanford University Press, pp. 230307.
Alexander, R.R. and Dietl, G.P. (2003) The fossil record of shell-breaking predation on marine bivalves and gastropods. In Kelley, P.H.Kowalewski, M. and Hansen, T.A. (eds) Predator–prey interactions in the fossil record. (Topics in Geobiology, Volume 20). New York: Springer, pp. 141179.
Appleton, R.D. and Palmer, A.R. (1988) Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proceedings of the National Academy of Sciences of the United States of America 85, 43874391.
Barbeau, M.A. and Scheibling, R.E. (1994) Procedural effects of prey tethering experiments-predation of juvenile scallops by crabs and sea stars. Marine Ecology Progress Series 111, 305310.
Bertness, M.D., Garrity, S.D. and Levings, S.C. (1981) Predation pressure and gastropod foraging: a tropical–temperate comparison. Evolution 35, 9951007.
Boulding, E.G., Holst, M. and Pilon, V. (1999) Changes in selection on gastropod shell size and thickness with wave-exposure on northeastern pacific shores. Journal of Experimental Marine Biology and Ecology 232, 217239.
Boulding, E.G. and Van Alstyne, K.L. (1993) Mechanisms of differential survival and growth of two species of Littorina on wave-exposed and on protected shores. Journal of Experimental Marine Biology and Ecology 169, 139166.
Brazao, S.A.E., Silva, A.C.F. and Boaventura, D.M. (2009) Predation: a regulating force of intertidal assemblages on the central Portuguese coast? Journal of the Marine Biological Association of the United Kingdom 89, 15411548.
Burrows, M.T., Kawai, K. and Hughes, R.N. (1999) Foraging by mobile predators on a rocky shore: underwater TV observations of movements of blennies Lipophrys pholis and crabs Carcinus maenas. Marine Ecology Progress Series 187, 237250.
Cadee, G.C., Walker, S.E. and Flessa, K.W. (1997) Gastropod shell repair in the intertidal of Bahia la Choya. Palaeogeography, Palaeoclimatology, Palaeoecology 136, 6778.
Cannicci, S., Gomei, M. and Vannini, M. (2002) Feeding habits and natural diet of the intertidal crab Pachygrapsus marmoratus: opportunistic browser or selective feeder? Estuarine, Coastal and Shelf Science 54, 9831001.
Chapin, D. (1968) Some observations of predation on Acmaea species by the crab Pachygrapsus crassipes. Veliger 11 (Supplement), 6768.
Dietl, G.P. and Kosloski, M.E. (2013) On the measurement of repair frequency: how important is data standardization? Palaios, 28, 394402.
Frank, P.W. (1975) Latitudinal variation in the life history features of the black turban snail Tegula funebralis (Prosobranchia: Trochidae). Marine Biology 31, 181192.
Guidetti, P. (2007) Predator diversity and density affect levels of predation upon strongly interactive species in temperate rocky reefs. Oecologia 154, 513520.
Heller, J. (1976) The effects of exposure and predation on the shell of two British winkles. Journal of Zoology 179, 201213.
Holsman, K.K., McDonald, P.S. and Armstrong, D.A. (2006) Intertidal migration and habitat use by subadult Dungeness crab Cancer magister in a NE Pacific estuary. Marine Ecology Progress Series 308, 183195.
Hughes, R.N. and Seed, R. (1995) Behavioural mechanisms of prey selection in crabs. Journal of Experimental Marine Biology and Ecology 193, 225238.
Huntley, J.W. and Kowalewski, M. (2007) Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences of the United States of America 104, 1500615010.
Iribarne, O., Fernandez, M. and Armstrong, D. (1994) Does space competition regulate density of juvenile Dungeness crab Cancer magister (Dana) in sheltered habitats? Journal of Experimental Marine Biology and Ecology 183, 259271.
Iwasaki, K. (1993) Analyses of limpet defense and predator offense in the field. Marine Biology 116, 277289.
Kelley, P.H., Kowalewski, M. and Hansen, T.A. (eds) (2003) Predator–prey interactions in the fossil record. New York: Kluwer Academic/Plenum Publishers.
Kitching, J.A., Muntz, L. and Ebling, F.J. (1966) The ecology of Lough Ine. XV. The ecological significance of shell and body forms in Nucella. Journal of Animal Ecology 35, 113126.
Kneib, R.T. and Scheele, C.E.H. (2000) Does tethering of mobile prey measure relative predation potential? An empirical test using mummichogs and grass shrimp. Marine Ecology Progress Series 198, 181190.
Kowalewski, M. (2002) The fossil record of predation: an overview of analytical methods. In Kowalewski, M. and Kelley, P.H. (eds) The fossil record of predation, Volume 8. New Haven, CT: The Paleontological Society, pp. 342.
Lawton, P. and Hughes, R.N. (1985) Foraging behaviour of the crab Cancer pagurus feeding on the gastropods Nucella lapillus and Littorina littorea: comparisons with optimal foraging theory. Marine Ecology Progress Series 27, 143154.
Leighton, L.R. (2001) New directions in the paleoecology of Paleozoic brachiopods. In Carlson, S.J. and Sandy, M.R. (eds) Proceedings of the Paleontological Society Short Course, Boston, MA, 2001. Boston, MA: The Paleontological Society Papers, Volume 7, pp. 185–205.
Leighton, L.R. (2002) Inferring predation intensity in the marine fossil record. Paleobiology 28, 328342.
Leonard, G.H., Levine, J.M., Schmidt, P.R. and Bertness, M.D. (1998) Flow-driven variation in intertidal community structure in a marine estuary. Ecology 79, 13951411.
Lowell, R.B. (1986) Crab predation on limpets: predator behaviour and defensive features of the shell morphology of the prey. Biological Bulletin. Marine Biological Laboratory, Woods Hole 171, 577596.
Menge, B.A. and Lubchenco, J. (1981) Community organization in temperate and rocky inter-tidal habitats: prey refuges in reation to consumer pressure-gradients. Ecological Monographs 51, 429450.
Molinaro, D.J., Stafford, E.S., Collins, B.M.J., Barclay, K.M., Tyler, C.L. and Leighton, L.R. (in press) Peeling out predation: a test of repair scar frequency as a suitable proxy for predation pressure along a modern predation gradient. Palaeogeography, Palaeoclimatology, Palaeoecology.
Moody, R.M. and Aronson, R.B. (2012) Predator-induced defenses in a salt-marsh gastropod. Journal of Experimental Marine Biology and Ecology 413, 7886.
Paine, R.T. (1966) Food web complexity and species diversity. American Naturalist 100, 6575.
Pianka, E.R. (1966) Latitudinal gradients in species diversity: a review of concepts. American Naturalist 100, 3346.
Preston, S.J. and Roberts, D. (2007) Variation in shell morphology of Calliostoma zizyphinum (Gastropoda: Trochidae). Journal of Molluscan Studies 73, 101104.
Raffaelli, D.G. (1982) Recent ecological research on some European species of Littorina. Journal of Molluscan Studies 48, 342354.
Raffaelli, D.G. and Hughes, R.N. (1978) The effects of crevice size and availability on populations of Littorina rudis and Littorina neritoides. Journal of Animal Ecology 47, 7183.
Ray-Culp, M., Davis, M. and Stoner, A.W. (1999) Predation by xanthid crabs on early post-settlement gastropods: the role of prey size, prey density, and habitat complexity. Journal of Experimental Marine Biology and Ecology 240, 303321.
Rittschof, D. (1992) Chemosensation in the daily life of crabs. American Zoologist 32, 363369.
Robles, C., Alvarado, M.A. and Desharnais, R.A. (2001) The shifting balance of littoral predator–prey interaction in regimes of hydrodynamic stress. Oecologia 128, 142152.
Robles, C., Sweetnam, D.A. and Dittman, D. (1989) Diel variation of intertidal foraging by Cancer productus in British Columbia. Journal of Natural History 23, 10411049.
Sallan, L.C., Kammer, T.W., Ausich, W.I. and Cook, L.A. (2011) Persistent predator–prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences of the United States of America 108, 83358338.
Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. and Roy, K. (2009) Is there a latitudianl gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics 40, 245269.
Schindler, D.E., Johnson, B.M., MacKay, N.A., Bouwes, N. and Kitchell, J.F. (1994) Crab–snail size-structured interactions and salt-marsh predation gradients. Oecologia 97, 4961.
Silva, A.C., Hawkins, S.J., Clarke, K.R., Boaventura, D.M. and Thompson, R.C. (2010a) Preferential feeding by the crab Necora puber on differing sizes of the intertidal limpet Patella vulgata. Marine Ecology Progress Series 416, 179188.
Silva, A.C., Silva, I.C., Hawkins, S.J., Boaventura, D.M. and Thompson, R.C. (2010b) Cheliped morphological variation of the intertidal crab Eriphia verrucosa across shores of differing exposure to wave action. Journal of Experimental Marine Biology and Ecology 391, 8491.
Silva, A.C.F., Hawkins, S.J., Boaventura, D.M. and Thompson, R.C. (2008) Predation by small mobile aquatic predators regulates populations of the intertidal limpet Patella vulgata (L.). Journal of Experimental Marine Biology and Ecology 367, 259265.
Stafford, E.S. and Leighton, L.R. (2011) Vermeij crushing analysis: a new old technique for estimating crushing predation in gastropod assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 123137.
Stafford, E.S., Dietl, G.P., Murray, P.G. and Leighton, L.R. (in press, a) Caedichnus, a new ichnogeus representing predatory attack on the gastropod shell aperture. Ichnos.
Stafford, E.S., Tyler, C.L. and Leighton, L.R. (in press, b) Shell repair frequency tracks predator abundance in intertidal gastropods. Marine Ecology.
Stevens, B.G., Armstrong, D.A. and Hoeman, J.C. (1984) Diel activity of an estuarine population of Dungeness crabs, Cancer magister, in relation to feeding and environmental factors. Journal of Crustacean Biology 4, 390403.
Thompson, R.C., Jenkins, S.R. and Bussell, J.A. (2000) A method for recording predator–prey encounters between crabs and limpets using wax replicas. Journal of the Marine Biological Association of the United Kingdom 80, 633638.
Tyler, C.L., Leighton, L.R. and Kowalewski, M. (2014) The effects of limpet morphology on predation by adult cancrid crabs. Journal of Experimental Marine Biology and Ecology 451, 915.
Vermeij, G.J. (1987) Evolution and escalation: an ecological history of life. Lawrenceville, NJ: Princeton University Press.
Vermeij, G.J., Schindel, D.E. and Zipser, E. (1981) Predation through geological time: evidence from gastropod shell repair. Science 214, 10241026.
Wootton, J.T. (1992) Indirect effects, prey susceptibility, and habitat selection: impacts of birds on limpets and algae. Ecology 73, 981991.
Yamada, S.B. and Boulding, E.G. (1996) The role of highly mobile crab predators in the intertidal zonation of their gastropod prey. Journal of Experimental Marine Biology and Ecology 204, 5983.
Yamada, S.B. and Boulding, E.G. (1998) Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell-breaking crabs. Journal of Experimental Marine Biology and Ecology 220, 191211.
Zimmer-Faust, R.K., Fielder, D.R., Heck, K.L., Coen, L.D. and Morgan, S.G. (1994) Effects of tethering on predatory escape by juvenile blue crabs. Marine Ecology Progress Series 111, 299303.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Marine Biological Association of the United Kingdom
  • ISSN: 0025-3154
  • EISSN: 1469-7769
  • URL: /core/journals/journal-of-the-marine-biological-association-of-the-united-kingdom
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed