Hostname: page-component-78857b5c4d-r97xl Total loading time: 0 Render date: 2023-08-06T15:02:57.277Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": false, "useRatesEcommerce": true } hasContentIssue false

Behavioural preference for low levels of UV-B radiation in two neotropical frog species from Costa Rica

Published online by Cambridge University Press:  06 August 2018

Joseph A. DeMarchi
Affiliation:
Department of Biology, John Carroll University, University Heights, Ohio 44118, USA
Andrew Britton
Affiliation:
Department of Biology, John Carroll University, University Heights, Ohio 44118, USA
Kaylee O'Donnell
Affiliation:
Department of Biology, John Carroll University, University Heights, Ohio 44118, USA
Ralph A. Saporito*
Affiliation:
Department of Biology, John Carroll University, University Heights, Ohio 44118, USA
*
*Corresponding author. Email: rsaporito@jcu.edu

Abstract:

Tropical frogs experience damaging effects from exposure to UV-B radiation, and some diurnally active, conspicuous species exhibit avoidance behaviours to high levels of UV-B. To determine if similar behaviours are present in other diurnal frogs, we experimentally compared UV-B avoidance in two common species of neotropical diurnal frogs – Oophaga pumilio, an aposematic poison frog and Craugastor bransfordii, a cryptic leaf-litter frog – in response to different levels of UV-B. Wild-caught frogs were tested in experimental arenas fitted with filters that permitted two different levels of UV-B (low: 14% vs. high: 84% UV-B). Both species spent significantly more time under the low UV-B filter, suggesting that behavioural preferences for lower levels of UV-B are common to different diurnal species. Furthermore, male O. pumilio significantly preferred lower levels of UV-B, whereas females did not exhibit a preference for lower UV-B, which may suggest differences in UV-B exposure or sensitivity and/or alternative mechanism(s) to avoid UV-B between sexes. Although limited in scope, the findings of our study suggest that UV-B avoidance may be a behavioural adaptation common to all diurnal frogs.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANKLEY, G. T., DIAMOND, S. A., TIETGE, J. E., HOLCOMBE, G. W., JENSEN, K. M., DEFOE, D. L. & PETERSON, R. 2002. Assessment of the risk of solar ultraviolet radiation to amphibians. I. Dose-dependent induction of hindlimb malformations in the northern leopard frog (Rana pipiens). Environmental Science and Technology 36:28532858.CrossRefGoogle Scholar
BELDEN, L. K. & BLAUSTEIN, A. R. 2002a. Exposure of red-legged frog to ambient UV-B radiation in the field negatively affects larval growth and development. Oecologia 130:551554.CrossRefGoogle ScholarPubMed
BELDEN, L. K. & BLAUSTEIN, A. R. 2002b. Population differences in sensitivity to UV-B radiation in larval long-toed salamanders. Ecology 83:15861590.CrossRefGoogle Scholar
BLANCHETTE, A., BECZA, N. & SAPORITO, R. A. 2017. Escape behaviour of aposematic (Oophaga pumilio) and cryptic (Craugastor sp.) frogs in response to simulated predator approach. Journal of Tropical Ecology 33:165169.CrossRefGoogle Scholar
BLAUSTEIN, A. R. & BELDEN, L. K. 2003. Amphibian defenses against ultraviolet-B radiation. Evolution and Development 5:8997.CrossRefGoogle ScholarPubMed
BLAUSTEIN, A. R. & KIESECKER, J. M. 2002. Complexity in conservation: lessons from the global decline of amphibian populations. Ecology Letters 5:597608.CrossRefGoogle Scholar
BLAUSTEIN, A. R., KIESECKER, J. M., CHIVERS, D. P., HOKIT, D. G., MARCO, A., BELDEN, L. K. & HATCH, A. 1998. Effects of ultraviolet radiation on amphibians: field experiments. American Zoologist 36:799812.CrossRefGoogle Scholar
BLAUSTEIN, A. R., CHIVERS, D. P., KATS, L. B. & KIESECKER, J. M. 2000. Effects of ultraviolet radiation on locomotion and orientation in roughskin newts (Taricha granulosa). Ethology 106:227234.CrossRefGoogle Scholar
BRUST, D. G. 1993. Maternal brood care by Dendrobates pumilio: a frog that feeds its young. Journal of Herpetology 27:9698.CrossRefGoogle Scholar
CALDWELL, M. M. & FLINT, S. D. 1994. Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Climatic Change 28:375394.CrossRefGoogle Scholar
CALDWELL, M. M., BJÖRN, L. O., BORNMAN, J. F., FLINT, S. D., KULANDAIVELU, G., TERAMURA, A. H. & TEVINI, M. 1998. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. Journal of Photochemistry and Photobiology B: Biology 46:4052.CrossRefGoogle Scholar
CROTEAU, M. C., DAVIDSON, M. A., LEAN, D. R. S. & TRUDEAU, V. L. 2008. Global increases in ultraviolet B radiation: potential impacts on amphibian development and metamorphosis. Physiological and Biochemical Zoology 81:743761.CrossRefGoogle ScholarPubMed
CRUMP, M. L. 2015. Anuran reproductive modes: evolving perspectives. Journal of Herpetology 49:116.CrossRefGoogle Scholar
FITE, K. V., BLAUSTEIN, A. R., BENGSTON, L. & HEWITT, H. E. 1998. Evidence of retinal light damage in Rana cascadae: a declining amphibian species. Copeia 1998:906914.CrossRefGoogle Scholar
GUYER, C. & DONNELLY, M. A. 2005. Amphibians and reptiles of La Selva, Costa Rica, and the Caribbean Slope. University of California Press, Berkeley. 299 pp.Google Scholar
HAASE, A. & PRÖHL, H. 2002. Female activity patterns and aggressiveness in the strawberry poison frog Dendrobates pumilio (Anura: Dendrobatidae). Amphibia-Reptilia 23:129140.CrossRefGoogle Scholar
HAN, B. A., KATS, L. B., POMMERENING, R. C., FERRER, R. P., MURRY-EWERS, M. & BLAUSTEIN, A. R. 2007. Behavioral avoidance of ultraviolet-B radiation by two species of neotropical poison-dart frogs. Biotropica 39:433435.CrossRefGoogle Scholar
KATS, L. B., KIESECKER, J. M., CHIVERS, D. P. & BLAUSTEIN, A. R. 2000. Effects of UV-B radiation on anti-predator behavior in three species of amphibians. Ethology 106:921931.CrossRefGoogle Scholar
KATS, L. B., BUCCIARELLI, G. M., SCHLAIS, D. E., BLAUSTEIN, A. R. & HAN, B. A. 2012. Ultraviolet radiation influences perch selection by a Neotropical poison-dart frog. PloS ONE 7:e51364.CrossRefGoogle ScholarPubMed
MARINONE, M. C., MARQUE, S. M., SUÁREZ, D. A., DIÉGUEZ, M. C., PÉREZ, P., DE LOS RIOS, P., SOTO, D. & ZAGARESE, H. E. 2006. UV radiation as a potential driving force for zooplankton community structure in Patagonian lakes. Photochemistry and Photobiology 82:962971.CrossRefGoogle ScholarPubMed
MCKENZIE, R. L., LILEY, J. B. & BJÖRN, L. O. 2009. UV radiation: balancing risks and benefits. Journal of Photochemistry and Photobiology 85:8898.CrossRefGoogle ScholarPubMed
MIDDLETON, E. M., HERMAN, J. R., CELARIER, E. A., WILKINSON, J. W., CAREY, C. & RUSIN, R. J. 2001. Evaluating ultraviolet radiation exposure with satellite data at sites of amphibian declines in Central and South America. Conservation Biology 15:914929.CrossRefGoogle Scholar
MOSTAJIR, B., DEMERS, S., DE MORA, S., BELZILE, C., CHANUT, J. P. & GOSSELIN, M. 1999. Experimental test of the effect of ultraviolet-B radiation in a planktonic community. Limnology and Oceanography 44:586596.CrossRefGoogle Scholar
OVASKA, K., DAVIS, T. M. & FLAMARIQUE, I. N. 1997. Hatching success and larval survival of the frogs Hyla regilla and Rana aurora under ambient and artificially enhanced solar ultraviolet radiation. Canadian Journal of Zoology 75:10811088.CrossRefGoogle Scholar
PAHKALA, M., LAURILA, A. & MERILA, J. 2001. Carry-over effects of ultraviolet-B radiation on larval fitness in Rana temporaria. Proceedings of the Royal Society B 268:16991706.CrossRefGoogle ScholarPubMed
PRÖHL, H. 2005. Territorial behavior in dendrobatid frogs. Journal of Herpetology 39:354365.CrossRefGoogle Scholar
PRÖHL, H. & HÖDL, W. 1999. Parental investment, potential reproductive rates, and mating system in the strawberry dart-poison frog (Dendrobates pumilio). Behavioral Ecology and Sociobiology 46:215220.CrossRefGoogle Scholar
RIES, G., HELLER, W., PUCHTA, H., SANDERMANN, H., SEIDLITZ, H. K. & HOHN, B. 2000. Elevated UV-B radiation reduces genome stability in plants. Nature 406:98101.CrossRefGoogle ScholarPubMed
SANCAR, A. & TANG, M. 1993. Nucleotide excision repair. Photochemistry and Photobiology 57:905921.CrossRefGoogle ScholarPubMed
SAVAGE, J. M. 2002. The amphibians and reptiles of Costa Rica: a herpetofauna between two continents, between two seas. University of Chicago Press, Chicago. 934 pp.Google Scholar
STYNOSKI, J. L. 2009. Discrimination of offspring by indirect recognition in an egg-feeding dendrobatid frog, Oophaga pumilio. Animal Behaviour 78:13511356.CrossRefGoogle Scholar
WEYGOLDT, P. 1980. Complex brood care and reproductive behaviour in captive poison-arrow frogs, Dendrobates pumilio O. Schmidt. Behavioral Ecology and Sociobiology 7:329332.CrossRefGoogle Scholar