Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T19:22:01.168Z Has data issue: false hasContentIssue false

Contrasting patterns of taxonomic, phylogenetic and functional variation along a Costa Rican altitudinal gradient in the plant family Melastomataceae

Published online by Cambridge University Press:  08 June 2018

Gaurav S. Kandlikar*
Affiliation:
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
Marcel C. Vaz*
Affiliation:
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
Ricardo Kriebel
Affiliation:
Department of Botany, University of Wisconsin-Madison, USA
German Vargas
Affiliation:
College of Biological Sciences, National University of Costa Rica
Fabián A. Michelangeli
Affiliation:
Institute of Systematic Botany, The New York Botanical Garden, USA
Roberto Cordero
Affiliation:
College of Biological Sciences, National University of Costa Rica
Frank Almeda
Affiliation:
Institute for Biodiversity Science and Sustainability, California Academy of Sciences, USA
Gerardo Avalos
Affiliation:
School of Biology, University of Costa Rica
Ned Fetcher
Affiliation:
Institute for Environmental Science and Sustainability, Wilkes University, USA
Nathan J. B. Kraft
Affiliation:
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
*
*Corresponding authors. Emails: gkandlikar@ucla.edu; mcvaz@ucla.edu
*Corresponding authors. Emails: gkandlikar@ucla.edu; mcvaz@ucla.edu

Abstract:

The functional composition of plant communities in montane regions has been studied for decades, and most recent analyses find that environmentally favourable landscapes at lower altitudes tend to be dominated by species with resource-acquisitive traits, while more resource-conservative taxa dominate higher-altitude communities. However, it is unclear the extent to which this pattern is driven by co-gradient variation within clades or changes in clade representation across the gradient. To test for co-gradient variation, species composition, phylogenetic structure and functional traits were quantified for 97 species within the plant family Melastomataceae at five locations across a 2500-m altitudinal gradient along Volcán Barva in Costa Rica. Average melastome leaf force to punch, specific leaf area and leaf size vary with altitude, while four other functional traits do not. Taxonomic dissimilarity between communities was correlated with altitudinal difference, while phylogenetic dissimilarity was correlated with altitudinal dissimilarity only when measured with a metric that emphasizes shallow turnover of the tips of the phylogeny. These results highlight how species turnover may be more pronounced than functional or phylogenetic variation along altitudinal gradients. In addition, these results highlight the conservation value of lowland tropical forests, which here harbour a disproportionate amount of phylogenetic and functional diversity.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACKERLY, D. D. & CORNWELL, W. K. 2007. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters 10:135145.CrossRefGoogle ScholarPubMed
ASNER, G. P. & MARTIN, R. E. 2016. Convergent elevation trends in canopy chemical traits of tropical forests. Global Change Biology 22:22162227.CrossRefGoogle ScholarPubMed
BLOMBERG, S. P., GARLAND, T. J. R. & IVES, A. R. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717745.Google ScholarPubMed
CLARK, D. B., HURTADO, J. & SAATCHI, S. S. 2015. Tropical rainforest structure, tree growth and dynamics along a 2700-m elevational transect in Costa Rica. PLoS ONE 10:e0122905.CrossRefGoogle ScholarPubMed
CORNWELL, W. K. & ACKERLY, D. D. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79:109126.CrossRefGoogle Scholar
FEELEY, K. J., HURTADO, J., SAATCHI, S., SILMAN, M. R. & CLARK, D. B. 2013. Compositional shifts in Costa Rican forests due to climate-driven species migrations. Global Change Biology 19:34723480.CrossRefGoogle ScholarPubMed
GOLDENBERG, R., ALMEDA, F., SOSA, K., RIBEIRO, R. C. & MICHELANGELI, F. A. 2015. Rupestrea: a new Brazilian genus of Melastomataceae, with anomalous seeds and dry indehiscent fruits. Systematic Botany 40:561571.Google Scholar
HAMMEL, B. E., GRAYUM, M. H., HERRERA, G. & ZAMORA, N. 2007. Manual de Plantas de Costa Rica, Volumen VI: Dicotiledóneas (Haloragaceae – Phytolaccaceae). Missouri Botanical Garden Press, St. Louis.Google Scholar
KÖRNER, C. 2007. The use of “altitude” in ecological research. Trends in Ecology and Evolution 22:569574.CrossRefGoogle Scholar
KRIEBEL, R., MICHELANGELI, F. A. & KELLY, L. M. 2015. Discovery of unusual anatomical and continuous characters in the evolutionary history of Conostegia (Miconieae: Melastomataceae). Molecular Phylogenetics and Evolution 82:289313.CrossRefGoogle ScholarPubMed
LIEBERMAN, D., LIEBERMAN, M., PERALTA, R. & HARTSHORN, G. S. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84:137152.CrossRefGoogle Scholar
LOZUPONE, C. & KNIGHT, R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71:82288235.CrossRefGoogle ScholarPubMed
LUSK, C. H., REICH, P. B., MONTGOMERY, R. A., ACKERLY, D. D. & CAVENDER-BARES, J. 2008. Why are evergreen trees so contrary about shade? Trends in Ecology and Evolution 23:299303.CrossRefGoogle Scholar
PÉREZ-HARGUINDEGUY, N., DÍAZ, S., GARNIER, E., LAVOREL, S., POORTER, H., JAUREGUIBERRY, P., BRET-HARTE, M. S., CORNWELL, W. K., CRAINE, J. M., GURVICH, D. E., URCELAY, C., VENEKLAAS, E. J., REICH, P. B., POORTER, L., WRIGHT, I. J., RAY, P., ENRICO, L., PAUSAS, J. G., DE VOS, A. C., BUCHMANN, N., FUNES, G., QUETIER, F., HODGSON, J. G., THOMPSON, K., MORGAN, H. D., TER STEEGE, H., VAN DER HEIJDEN, M. G. A., SACK, L., BLONDER, B., POSCHLOD, P., VAIERETTI, M. V., CONTI, G., STAVER, A. C., AQUINO, S. & CORNELISSEN, J. H. C. 2013. New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany 61:167234.CrossRefGoogle Scholar
READ, Q. D., MOORHEAD, L. C., SWENSON, N. G., BAILEY, J. K. & SANDERS, N. J. 2014. Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology 28:3745.CrossRefGoogle Scholar
REGINATO, M., NEUBIG, K. M., MAJURE, L. C. & MICHELANGELI, F. A. 2016. The first complete plastid genomes of Melastomataceae are highly structurally conserved. PeerJ 4:e2715.CrossRefGoogle ScholarPubMed
REICH, P. B. 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 102:275301.CrossRefGoogle Scholar
RENNER, S. S. 1986. The Neotropical epiphytic Melastomataceae: phytogeographic patterns, fruit types, and floral biology. Selbyana 9:104111.Google Scholar
RIBEIRO, R. C., FIGUEIREDO, M. L. N., PICORELLI, A., OLIVEIRA, D. M. T. & SILVEIRA, F. A. O. 2016. Does seed coat structure modulate gut-passage effects on seed germination? Examples from Miconieae DC. (Melastomataceae). Seed Science Research 26:136147.CrossRefGoogle Scholar
RUOKOLAINEN, K., LINNA, A. & TUOMISTO, H. 1997. Use of Melastomataceae and pteridophytes for revealing phytogeographical patterns in Amazonian rain forests. Journal of Tropical Ecology 13:243256.CrossRefGoogle Scholar
SCHIMPER, A. F. W. 1925. Oecology of plants: an introduction to the study of plant-communities. Oxford University Press, Oxford. 422 pp.Google Scholar
SWENSON, N. G. 2011. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS ONE 6:e21264.Google Scholar
SWENSON, N. G., ANGLADA-CORDERO, P. & BARONE, J. A. 2011. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society B 278:877884.CrossRefGoogle ScholarPubMed
VIOLLE, C., ENQUIST, B. J., MCGILL, B. J., JIANG, L., ALBERT, C. H., HULSHOF, C., JUNG, V. & MESSIER, J. 2012. The return of the variance: intraspecific variability in community ecology. Trends in Ecology and Evolution 27:244252.CrossRefGoogle ScholarPubMed
WESTOBY, M., FALSTER, D. S., MOLES, A. T., VESK, P. A. & WRIGHT, I. J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review in Ecology and Systematics 33:125159.CrossRefGoogle Scholar