Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T14:13:08.667Z Has data issue: false hasContentIssue false

Altitudinal filtering of large-tree species explains above-ground biomass variation in an Atlantic Central African rain forest

Published online by Cambridge University Press:  18 January 2017

Christelle Gonmadje*
Affiliation:
CIRAD, Campus International de Baillarguet, TA C-105/D, F-34398 Montpellier, France Department of Plant Biology, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
Nicolas Picard
Affiliation:
Forestry Department, FAO, Viale delle Terme di Caracalla – 00153 Rome, Italy
Sylvie Gourlet-Fleury
Affiliation:
CIRAD, Campus International de Baillarguet, TA C-105/D, F-34398 Montpellier, France
Maxime Réjou-Méchain
Affiliation:
UMR AMAP, IRD, F-34000 Montpellier, France French Institute of Pondicherry, UMIFRE 21/USR 3330 CNRS-MAEE, Pondicherry, India
Vincent Freycon
Affiliation:
CIRAD, Campus International de Baillarguet, TA C-105/D, F-34398 Montpellier, France
Terry Sunderland
Affiliation:
CIFOR, P.O. Box 0113, BOBCD Bogor 16000, Indonesia
Doyle McKey
Affiliation:
Centre d'Ecologie Fonctionnelle et Evolutive, UMR, CNRS 5175, 1919 route de Mende, F-34293 Montpellier, France
Charles Doumenge
Affiliation:
CIRAD, Campus International de Baillarguet, TA C-105/D, F-34398 Montpellier, France
*
*Corresponding author. Email: cgonmadje@yahoo.fr

Abstract:

Patterns in above-ground biomass of tropical forests over short altitudinal gradients are poorly known. The aim of this study was to investigate the variation of above-ground biomass with altitude in old-growth forests and determine the importance of changes in floristic composition as a cause of this variation. We used a dataset from 15 1-ha permanent plots established from lowland (200 m asl) to submontane forests (900 m asl) in the Ngovayang Massif, south-western Cameroon. We analysed variation over altitude in two specific functional traits, the potential maximum tree height and the wood density. Forest above-ground biomass decreased from 500–600 Mg ha−1 in lowland plots to around 260 Mg ha−1 at the highest altitudes. The contribution to above-ground biomass of large-tree species (dbh ≥ 70 cm) decreased with altitude, while the contribution of smaller trees was constant. Contribution of the Fabaceae subfamily Caesalpinioideae decreased with altitude, while those of Clusiaceae, Phyllanthaceae and Burseraceae increased. While potential maximum tree height significantly decreased, wood specific gravity displayed no trend along the gradient. Finally, the decrease in above-ground biomass along the short altitudinal gradient can be at least partially explained by a shift in species composition, with large-tree species being filtered out at the highest altitudes. These results suggest that global change could lead to significant shifts in the properties of montane forests over time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALVES, L. F., VIEIRA, S. A., SCARANELLO, M. A., CAMARGO, P. B., SANTOS, F. A., JOLY, C. A. & MARTINELLI, L. A. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management 260:679691.CrossRefGoogle Scholar
ASHTON, P. S. 2003. Floristic zonation of tree communities on wet tropical mountains revisited. Perspectives in Plant Ecology, Evolution and Systematics 6:87104.Google Scholar
BACCINI, A., GOETZ, S. J., WALKER, W. S., LAPORTE, N. T., SUN, M., SULLA-MENASHE, D., HACKLER, J., BECK, P. S. A., DUBAYAH, R., FRIEDL, M. A., SAMANTA, S. & HOUGHTON, R. A. 2012. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change 2:182185.Google Scholar
BAKER, T. R., PHILLIPS, O. L., MALHI, Y., ALMEIDA, S., ARROYO, L., DI FIORE, A., ERWIN, T., KILLEEN, T. J., LAURANCE, S. G. & LAURANCE, W. F. 2004. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10:545562.Google Scholar
BARALOTO, C., RABAUD, S., MOLTO, Q., BLANC, L., FORTUNEL, C., HERAULT, B., DAVILA, N., MESONES, I., RIOS, M. & VALDERRAMA, E. 2011. Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Global Change Biology 17:26772688.Google Scholar
BASTIN, J.-F., BARBIER, N., RÉJOU-MÉCHAIN, M., FAYOLLE, A., GOURLET-FLEURY, S., MANIATIS, D., DE HAULLEVILLE, T., BAYA, F., BEECKMAN, H., BEINA, D., COUTERON, P., CHUYONG, G., DAUBY, G., DOUCET, J. L., DROISSART, V., DUFRÊNE, M., EWANGO, C., GILLET, J.-F., GONMADJE, C. F., HART, T., KAVALI, T., KENFACK, D., LIBALAH, M., MALHI, Y., MAKANA, J. R., PÉLISSIER, R., DE CANNIÈRE, C. & BOGAERT, J. 2015. Seeing Central African forests through their largest trees. Scientific Reports 5.CrossRefGoogle ScholarPubMed
BREMER, B., BREMER, K., CHASE, M. W., FAY, M. F., REVEAL, J. L., BAILEY, L. H., SOLTIS, D. E., SOLTIS, P. S. & STEVENS, P. F. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105121.Google Scholar
CHAVE, J., COOMES, D., JANSEN, S., LEWIS, S. L., SWENSON, N. G. & ZANNE, A. E. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12:351366.CrossRefGoogle ScholarPubMed
CHAVE, J., RÉJOU-MÉCHAIN, M., BÚRQUEZ, A., CHIDUMAYO, E., COLGAN, M. S., DELITTI, W. B., DUQUE, A., EID, T., FEARNSIDE, P. M., GOODMAN, R. C., HENRY, M., MARTÍNEZ-YRÍZAR, A., MULLER-LANDAU, H. C., PÉLISSIER, R., PLOTON, P., SALDARRIAGA, J. & VIEILLEDENT, G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20:31773190.CrossRefGoogle ScholarPubMed
CLARK, D. A. 2004. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359:477491.Google Scholar
CULMSEE, H., LEUSCHNER, C., MOSER, G. & PITOPANG, R. 2010. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography 37:960974.CrossRefGoogle Scholar
DAY, M., BALDAUF, C., RUTISHAUSER, E. & SUNDERLAND, T. C. 2014. Relationships between tree species diversity and above-ground biomass in Central African rainforests: implications for REDD. Environmental Conservation 41:6472.Google Scholar
DE CASTILHO, C. V., MAGNUSSON, W. E., DE ARAÚJO, R. N. O., LUIZAO, R. C., LUIZAO, F. J., LIMA, A. P. & HIGUCHI, N. 2006. Variation in aboveground tree live biomass in a central Amazonian Forest: effects of soil and topography. Forest Ecology and Management 234:8596.Google Scholar
DOSSA, G. G., PAUDEL, E., FUJINUMA, J., YU, H., CHUTIPONG, W., ZHANG, Y., PAZ, S. & HARRISON, R. D. 2013. Factors determining forest diversity and biomass on a tropical volcano, Mt. Rinjani, Lombok, Indonesia. PLoS ONE 8:e67720.CrossRefGoogle ScholarPubMed
DOUCET, J. L. 2003. L'alliance délicate de la gestion forestière et de la biodiversité dans les forêts du centre du Gabon. Thèse de Doctorat, Faculté universitaire des sciences agronomiques de Gembloux, Gembloux, Belgique.Google Scholar
ENSSLIN, A., RUTTEN, G., POMMER, U., ZIMMERMANN, R., HEMP, A. & FISCHER, M. 2015. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6:115.Google Scholar
FELDPAUSCH, T. R., LLOYD, J., LEWIS, S. L., BRIENEN, R. J., GLOOR, M., MONTEAGUDO MENDOZA, A., LOPEZ-GONZALEZ, G., BANIN, L., ABU SALIM, K., AFFUM-BAFFOE, K., VÁSQUEZ, M., VILANOVA, E., WHITE, L., WILLCOCK, S., WOELL, H. & PHILLIPS, O. L. 2012. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:33813403.Google Scholar
FISHER, J. B., MALHI, Y., TORRES, I. C., METCALFE, D. B., VAN DE WEG, M. J., MEIR, P., SILVA-ESPEJO, J. E. & HUASCO, W. H. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889902.CrossRefGoogle Scholar
GIRARDIN, C. A. J., MALHI, Y., ARAGAO, L., MAMANI, M., HUARACA HUASCO, W., DURAND, L., FEELEY, K. J., RAPP, J., SILVA-ESPEJO, J., SILMAN, M., SALINAS, N. & WHITTAKER, R. J. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 16:31763192.CrossRefGoogle Scholar
GIRARDIN, C. A., FARFAN-RIOS, W., GARCIA, K., FEELEY, K. J., JØRGENSEN, P. M., MURAKAMI, A. A., CAYOLA PÉREZ, L., SEIDEL, R., PANIAGUA, N., FUENTES CLAROS, A. F., MACÍAJ, M., KILLEEN, T. J. & MALHI, Y. 2014. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecology and Diversity 7:161171.Google Scholar
GONMADJE, C. F. 2012. Diversité et Biogéographie des forêts d'Afrique Centrale atlantique: le cas du massif de Ngovayang (Cameroun). Thèse de Doctorat, Université de Montpellier 2, Montpellier, France.Google Scholar
GONMADJE, C. F., DOUMENGE, C., MCKEY, D., TCHOUTO, G. P., SUNDERLAND, T. C., BALINGA, M. P. & SONKÉ, B. 2011. Tree diversity and conservation value of Ngovayang's lowland forests, Cameroon. Biodiversity and Conservation 12:26272648.CrossRefGoogle Scholar
GONMADJE, C. F., DOUMENGE, C., SUNDERLAND, T. C. H., BALINGA, M. B. P. & SONKÉ, B. 2012. Analyse phytogéographique des forêts d'Afrique Centrale: le cas du massif de Ngovayang (Cameroun). Plant Ecology and Evolution 2:152164.CrossRefGoogle Scholar
GOURLET-FLEURY, S., ROSSI, V., RÉJOU-MÉCHAIN, M., FREYCON, V., FAYOLLE, A., SAINT-ANDRE, L., CORNU, G., GERARD, J., SARRAILH, J-M., FLORES, O., BAYA, F., BILLAND, A., FAUVET, N., GALLY, M., HENRY, M., HUBERT, D., PASQUIER, A. & PICARD, N. 2011. Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests. Journal of Ecology 99:981990.Google Scholar
HOUGHTON, R. A. 2005. Aboveground forest biomass and the global carbon balance. Global Change Biology 11:945958.CrossRefGoogle Scholar
KESSLER, M. 2002. The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. Journal of Biogeography 29:11591165.CrossRefGoogle Scholar
KING, D. A., DAVIES, S. J., TAN, S. & NOOR, N. S. 2006. The role of wood density and stem support costs in the growth and mortality of tropical trees. Journal of Ecology 94:670680.Google Scholar
KITAYAMA, K. & AIBA, S. J. 2002. Control of organic carbon density in vegetation and soil of tropical rain forest ecosystems on Mount Kinabalu. Sabah Parks Nature Journal 5:7190.Google Scholar
KÖRNER, C. 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445459.Google Scholar
LETOUZEY, R. 1985. Notice de la carte phytogéographique du Cameroun. Institut de la carte Internationale de la Végétation, Toulouse.Google Scholar
LEUSCHNER, C., MOSER, G., BERTSCH, C., RÖDERSTEIN, M. & HERTEL, D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8:219230.CrossRefGoogle Scholar
LEWIS, S. L., LOPEZ-GONZALEZ, G., SONKÉ, B., AFFUM-BAFFOE, K., BAKER, T. R., OJO, L. O., PHILLIPS, O. L., REITSMA, J. M., WHITE, L., COMISKEY, J. A., DJUIKOUO, K. M-N., EWANGO, C. E. N, FELDPAUSCH, T. R., HAMILTON, A. C., GLOOR, M., HART, T., HLADIK, A., LLOYD, J., LOVETT, J. C., MAKANA, J-R., MALHI, Y., MBAGO, F. M., HENRY, J., NDANGALASI, H. J., PEACOCK, J., PEH, K. S.-H., SHEIL, D., SUNDERLAND, T., SWAINE, M. D., TAPLIN, J., TAYLOR, D., THOMAS, S. C., VOTERE, R. & WÖLL, H. 2009. Increasing carbon storage in intact African tropical forests. Nature 457:10031006.Google Scholar
LEWIS, S. L., SONKÉ, B., SUNDERLAND, T. C. H., BEGNE, S., VAN DER HEIJDEN, G. M. F., PHILLIPS, O. L., AFFUM-BAFFOE, K., BAKER, T. R., BANIN, L., BASTIN, J-F., BEECKMAN, H., BOECKX, P., BOGAERT, J., DE CANNIÈRE, C., CHEZEAUX, E., CLARK, J. C., COLLINS, M., DJAGBLETEY, G., DJUIKOUO, K. M-N., DROISSART, V., DOUCET, J-L., EWANGO, C. E. N., FAUSET, S., FELDPAUSCH, T. R., LLOYD, J., LOVETT, J. C., HART, T., OJO, L. O., HLADIK, A., MAKANA, J.-R., MALHI, Y., PEH, K. S.-H. & VERBEECK, H. 2013. Aboveground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 368:20120295.Google Scholar
LIEBERMAN, D., LIEBERMAN, M., PERALTA, R. & HARTSHORN, G. S. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84:137152.Google Scholar
MALHI, Y. & PHILLIPS, O. L. 2004. Tropical forests and global atmospheric change: a synthesis. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359:549555.Google Scholar
MALHI, Y., BAKER, T. R., PHILLIPS, O. L., ALMEIDA, S., ALVAREZ, E., ARROYO, L., CHAVE, J., CZIMCZIK, C. I., FIORE, A. D., HIGUCHI, N., LEZAMA, A. T., MARTÍNEZ, R. V., TERBORGH, J., VINCETI, B. & LLOYD, J. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10:563591.CrossRefGoogle Scholar
MARSHALL, A. R., WILLCOCK, S., PLATTS, P. J., LOVETT, J. C., BALMFORD, A., BURGESS, N. D., LATHAM, J. E., MUNISHI, P. K. T., SALTER, R., SHIRIMA, D. D. & LEWIS, S. L. 2012. Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biological Conservation 154:2033.Google Scholar
MITCHARD, E. T., FELDPAUSCH, T. R., BRIENEN, R. J., LOPEZ-GONZALEZ, G., MONTEAGUDO, A., BAKER, T. R., LEWIS, S. L., LLOYD, J., QUESADA, C. A., GLOOR, M., HANS TER STEEGE, H., MEIR, P., ALVAREZ, E., ARAUJO-MURAKAMI, A., ARAGÃO, L. E. O. C., ARROYO, L., GERARDO AYMARD, G., BANKI, O., BONAL, D., BROWN, S., BROWN, F. I., CERÓN, C. E., MOSCOSO, V. C., CHAVE, J., COMISKEY, J. A., MALHI, Y. & PHILLIPS, O. L. 2014. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography 23:935946.Google Scholar
MOLTO, Q., ROSSI, V. & BLANC, L. 2013. Error propagation in biomass estimation in tropical forests. Methods in Ecology and Evolution 4:175183.Google Scholar
MOSER, G., HERTEL, D. & LEUSCHNER, C. 2007. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924935.CrossRefGoogle Scholar
MOSER, G., RÖDERSTEIN, M., SOETHE, N., HERTEL, D. & LEUSCHNER, C. 2008. Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry. Pp. 229242 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds). Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin and Heidelberg.Google Scholar
MOSER, G., LEUSCHNER, C., HERTEL, D., GRAEFE, S., SOETHE, N. & IOST, S. 2011. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Global Change Biology 17:22112226.Google Scholar
OLIVRY, J. C. 1986. Fleuves et rivières du Cameroun. MESRES/ORSTOM, Monographie Hydrologique, ORSTOM, 9, Paris.Google Scholar
PAOLI, G. D., CURRAN, L. M. & SLIK, J. W. F. 2008. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155:287299.Google Scholar
PÉREZ-HARGUINDEGUY, N., DÍAZ, S., GARNIER, E., LAVOREL, S., POORTER, H., JAUREGUIBERRY, P., BRET-HARTE, M. S., CORNWELL, W. K., CRAINE, J. M., GURVICH, D. E., STAVER, C., AQUINO, S. & CORNELISSEN, C. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61:167234.Google Scholar
RAI, S. N. & PROCTOR, J. 1986. Ecological studies on four rainforests in Karnataka, India: I. Environment, structure, floristics and biomass. Journal of Ecology 74:439454.Google Scholar
RÉJOU-MÉCHAIN, M., FLORES, O., PÉLISSIER, R., FAYOLLE, A., FAUVET, N. & GOURLET-FLEURY, S. 2014. Tropical tree assembly depends on the interactions between successional and soil filtering processes. Global Ecology and Biogeography 23:14401449.Google Scholar
SAATCHI, S. S., HARRIS, N. L., BROWN, S., LEFSKY, M., MITCHARD, E. T., SALAS, W., ZUTTA, B. R., BUERMANN, W., LEWIS, S. L. & HAGEN, S. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences USA 108:98999904.CrossRefGoogle ScholarPubMed
SCHAMP, B. S. & AARSSEN, L. W. 2009. The assembly of forest communities according to maximum species height along resource and disturbance gradients. Oikos 118:564572.Google Scholar
SIST, P., MAZZEI, L., BLANC, L. & RUTISHAUSER, E. 2014. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. Forest Ecology and Management 318:103109.Google Scholar
SLIK, J. W. F. 2004. El Nino droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141:114120.Google Scholar
SLIK, J. W. F., BERNARD, C. S., BREMAN, F. C., VAN BEEK, M., SALIM, A. & SHEIL, D. 2008. Wood density as a conservation tool: quantification of disturbance and identification of conservation-priority areas in tropical forests. Conservation Biology 22:12991308.CrossRefGoogle ScholarPubMed
SLIK, J. W. F., AIBA, S.-I., BREARLEY, F. Q., CANNON, C. H., FORSHED, O., KITAYAMA, K., NAGAMASU, H., NILUS, R., PAYNE, J. & PAOLI, G. 2010. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo's tropical forests. Global Ecology and Biogeography 19:5060.Google Scholar
SLIK, J. W. F., PAOLI, G., MCGUIRE, K., AMARAL, I., BARROSO, J., BASTIAN, M., BLANC, L., BONGERS, F., BOUNDJA, P., CLARK, C., COLLINS, M., DAUBY, G., DING, Y., DOUCET, J-L., ELER, E., FERREIRA, L., FORSHED, O., FREDRIKSSON, G. GILLET, J-F., HARRIS, D., LEAL, M., LAUMONIER, Y., MALHI, Y., MANSOR, A., MARTIN, E., KAZUKI MIYAMOTO, ARAUJO-MURAKAMI, A., NAGAMASU, H., POORTER, L., POULSEN, J., REITSMA, J., SHEIL, D., TER STEEGE, H., SUNDERLAND, T., SUZUKI, E., WICH, S., WÖLL, H., YONE DA, T., ZANG, R., ZHANG, M.-G. & ZWEIFEL, N. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography 22:12611271.Google Scholar
SPRACKLEN, D. V. & RIGHELATO, R. 2014. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11:27412754.Google Scholar
TAKYU, M., KUBOTA, Y., AIBA, S., SEINO, T. & NISHIMURA, T. 2005. Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. Ecological Research 20:287296.Google Scholar
TANNER, E. V. J., VITOUSEK, P. M. & CUEVAS, E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:1022.Google Scholar
UNGER, M., HOMEIER, J. & LEUSCHNER, C. 2012. Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia 170:263274.CrossRefGoogle ScholarPubMed
VAN NIEUWSTADT, M. G. & SHEIL, D. 2005. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. Journal of Ecology 93:191201.Google Scholar
VIOLLE, C., NAVAS, M. L., VILE, D., KAZAKOU, E., FORTUNEL, C., HUMMEL, I. & GARNIER, E. 2007. Let the concept of trait be functional! Oikos 116:882892.Google Scholar
WATERLOO, M. J., NTONGA, J. C., DOLMAN, A. J. & AYANGMA, A. B. 2000. Impact of shifting cultivation and selective logging on the hydrology and erosion of rain forest land in south Cameroon. Tropenbos-Cameroon programme.Google Scholar
WESTOBY, M., FALSTER, D. S., MOLES, A. T., VESK, P. A. & WRIGHT, I. J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33:125159.Google Scholar
ZANNE, A. E., WESTOBY, M., FALSTER, D. S., ACKERLY, D. D., LOARIE, S. R., ARNOLD, S. E. & COOMES, D. A. 2010. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany 97:207215.Google Scholar