Skip to main content
    • Aa
    • Aa

Plant–microbe interactions along a gradient of soil fertility in tropical dry forest

  • Bonnie G. Waring (a1), Maria G. Gei (a1), Lisa Rosenthal (a1) and Jennifer S. Powers (a1) (a2)

Theoretical models predict that plant interactions with free-living soil microbes, pathogens and fungal symbionts are regulated by nutrient availability. Working along a steep natural gradient of soil fertility in a Costa Rican tropical dry forest, we examined how soil nutrients affect plant–microbe interactions using two complementary approaches. First, we measured mycorrhizal colonization of roots and soil P availability in 18 permanent plots spanning the soil fertility gradient. We measured root production, root colonization by mycorrhizal fungi, phosphatase activity and Bray P in each of 144 soil cores. Next, in a full-factorial manipulation of soil type and microbial community origin, tree seedlings of Albizia guachapele and Swietenia macrophylla were grown in sterilized high-, intermediate- and low-fertility soils paired with microbial inoculum from each soil type. Seedling growth, biomass allocation and root colonization by mycorrhizas were quantified after 2 mo. In the field, root colonization by mycorrhizal fungi was unrelated to soil phosphorus across a five-fold gradient of P availability. In the shadehouse, inoculation with soil microbes had either neutral or positive effects on plant growth, suggesting that positive effects of mycorrhizal symbionts outweighed negative effects of soil pathogens. The presence of soil microbes had a greater effect on plant biomass than variation in soil nutrient concentrations (although both effects were modest), and plant responses to mycorrhizal inoculation were not dependent on soil nutrients. Taken together, our results emphasize that soil microbial communities can influence plant growth and morphology independently of soil fertility.

Corresponding author
1Corresponding author. Email:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. ALLEN 2011. Linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems. Journal of Arid Lands 3:155163.

S. D. ALLISON & P. M. VITOUSEK 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry 37:937944.

J. M. BECKNELL & J. S. POWERS 2014. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Canadian Journal of Forest Research 44:604613.

J. D. BEVER , I. A. DICKIE , E. FACELLI , J. M. FACELLI , J. KLIRONOMOS , M. MOORA , M. C. RILLIG , W. D. STOCK , M. TIBBETT & M. ZOBEL 2010. Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution 25:468478.

T. CAMENZIND , S. HEMPEL , J. HOMEIER , S. HORN , A. VELESCU , W. WILCKE & M. C. RILLIG 2014. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology 20:36463659.

B. B. CASPER , S. P. BENTIVENGA , B. JI , J. H. DOHERTY , H. M. EDENBORN & D. J. GUSTAFSON 2008. Plant-soil feedback: testing the generality with the same grasses in serpentine and prairie soils. Ecology 89:21542164.

J. CORNELISSEN , S. LAVOREL , E. GARNIER , S. DIAZ , N. BUCHMANN , D. GURVICH , P. B. REICH , H. TER STEEGE , H. D. MOGAN & M. G. A. VAN DER HEIJDEN 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335380.

N. FIERER , M. S. STRICKLAND , D. LIPTZIN , M. A. BRADFORD & C. C. CLEVELAND 2009. Global patterns in belowground communities. Ecology Letters 12:12381249.

E. GRMAN 2012. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93:711718.

N. C. JOHNSON 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist 185:631647.

N. JOHNSON , G. WILSON , J. WILSON , R. MILLER & M. BOWKER 2015. Mycorrhizal phenotypes and the Law of the Minimum. New Phytologist 205:14731484.

J. P. KAYE & S. C. HART 1997. Competition for nitrogen between plants and soil microorganisms. Trends in Ecology and Evolution 12:139143.

E. KIERS , M. DUHAMEL , Y. BEESETTY , J. MENSAH , O. FRANKEN , E. VERBRUGGEN , C. R. FELLBAUM , G. A. KOWALCHUK , M. M. HART , A. BAGO , T. M. PALMER , S. A. WEST , P. VANDENKOORNHUYSE , J. JANSA & H. BUCKING 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880882.

R. KOSKE & J. GEMMA 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92:486488.

S. LAVOREL & E. GARNIER 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16:545556.

C. LOVELOCK , K. ANDERSEN & J. MORTON 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135:268279.

T. MCGONIGLE , M. MILLER , D. EVANS , G. FAIRCHILD & J. SWAN 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115:495501.

C. NEUHAUSER & J. FARGIONE 2004. A mutualism–parasitism continuum model and its application to plant–mycorrhizae interactions. Ecological Modelling 177:337352.

C. E. PAINE , T. R. MARTHEWS , D. R. VOGT , D. PURVES , M. REES , A. HECTOR & L. A. TURNBULL 2012. How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution 3:245256.

H. POORTER , K. NIKLAS , P. REICH , J. OLEKSYN , P. POOT & L. MOMMER 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193:3050.

J. S. POWERS , K. K. TRESEDER & M. LERDAU 2005. Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distances. New Phytologist 165:913921.

J. S. POWERS , J. M. BECKNELL , J. IRVING & D. PEREZ-AVILES 2009. Diversity and structure of regenerating tropical dry forests in Costa Rica: geographic patterns and environmental drivers. Forest Ecology and Management 258:959970.

J. M. RUIZ-LOZANO & R. AZCON 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiologia Plantarum 95:472478.

T. SCHEUBLIN , K. RIDGWAY , J. YOUNG & M. VAN DER HEIJDEN 2004. Nonlegumes, legumes and root nodules harbor different arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology 70:62406242.

R. L. SINSABAUGH , R. K. ANTIBUS , A. E. LINKINS , C. A. MCCLAUGHERTY , L. RAYBURN , D. REPERT & T. WEILAND 1993. Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74:15861593.

J. SIQUEIRA & O. SAGGIN-JÚNIOR 2001. Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza 11:245255.

K. K. TRESEDER 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164:347355.

K. K. TRESEDER & M. E. ALLEN 2002. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytologist 155:507515.

M. G. A. VAN DER HEIJDEN , R. D. BARDGETT & N. M. VAN STRAALEN 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11:296310.

W. VAN DER PUTTEN , R. BARDGETT , J. D. BEVER , M. BEZEMER , B. B. CASPER , T. FUKAMI , P. KARDOL , J. N. KLIRONOMOS , A. KULMATISKI , J. A. SCHWEITZER , K. N. SUDING , T. F. J. VAN DE VOORDE & D. A. WARDLE 2013. Plant-soil feedbacks: the past, the present, and future challenges. Journal of Ecology 101:265276.

B. G. WARING , J. M. BECKNELL & J. S. POWERS 2015. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest. Oecologia 178:887897.

B. G. WARING , R. ADAMS , S. BRANCO & J. S. POWERS 2016. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytologist 209:845854.

S. N. WOOD 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society B 73:336.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Tropical Ecology
  • ISSN: 0266-4674
  • EISSN: 1469-7831
  • URL: /core/journals/journal-of-tropical-ecology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 7
Total number of PDF views: 120 *
Loading metrics...

Abstract views

Total abstract views: 471 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th August 2017. This data will be updated every 24 hours.