Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T01:36:38.641Z Has data issue: false hasContentIssue false

Seed-dispersal ecology of tropical montane forests

Published online by Cambridge University Press:  03 August 2016

Hazel Chapman*
Affiliation:
School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
Norbert J. Cordeiro
Affiliation:
Department of Biology (mc814WB), Roosevelt University, 430 S. Michigan Avenue, Chicago, IL 60605, USA Science & Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
Paul Dutton
Affiliation:
School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
Dan Wenny
Affiliation:
San Francisco Bay Bird Observatory, 524 Valley Way, Milpitas, CA 95035, USA
Shumpei Kitamura
Affiliation:
Laboratory of Plant Ecology, Department of Environmental Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, 1-308, Suematu, Nonoichi, Ishikawa, 921-8836, Japan
Beth Kaplin
Affiliation:
Department of Environmental Studies, Antioch University New England, 40 Avon St. Keene, NH 03431, USA
Felipe P. L. Melo
Affiliation:
Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof Moraes Rego, S/N, 50670-901, Recife-PE, Brazil
Michael J. Lawes
Affiliation:
Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
*
1Corresponding author. Email: hazel.chapman@canterbury.ac.nz

Abstract:

Seed-dispersal ecology in tropical montane forests (TMF) differs in some predictable ways from tropical lowland forests (TLF). Environmental, biogeographic and biotic factors together shape dispersal syndromes which in turn influence forest structure and community composition. Data on diaspore traits along five elevational gradients from forests in Thailand, the Philippines, Tanzania, Malawi and Nigeria showed that diaspore size decreases with increasing altitude, fleshy fruits remain the most common fruit type but the relative proportion of wind-dispersed diaspores increases with altitude. Probably corresponding to diaspore size decreasing with increasing elevation, we also provide evidence that avian body size and gape width decrease with increasing altitude. Among other notable changes in the frugivorous fauna across elevational gradients, we found quantitative evidence illustrating that the proportion of bird versus mammalian frugivores increases with altitude, while TMF primates decrease in diversity and density, and switch diets to include less fruit and more leaf proportionately. A paucity of studies on dispersal distance and seed shadows, the dispersal/predation balance and density-dependent mortality thwart much-needed conclusive comparisons of seed dispersal ecology between TMF and TLF, especially from understudied Asian forests. We examine the available evidence, reveal knowledge gaps and recommend research to enhance our understanding of seed dispersal ecology in tropical forests. This review demonstrates that seed dispersal is a more deterministic and important process in tropical montane forests than has been previously appreciated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALIYU, B., ADAMU, H., MOLTCHANOVA, E., FORGET, P. M. & CHAPMAN, H. 2014. The interplay of habitat and seed type on scatterhoarding behavior in a fragmented Afromontane forest landscape. Biotropica 46:264267.Google Scholar
ALMEIDA-NETO, M., CAMPASSI, F., GALETTI, M., JORDANO, P. & OLIVEIRA-FILHO, A. 2008. Vertebrate dispersal syndromes along the Atlantic forest: broad-scale patterns and macroecological correlates. Global Ecology and Biogeography 17:503513.Google Scholar
ASPREY, G. F. & ROBBINS, R. G. 1953. The vegetation of Jamaica. Ecological Monographs 23:359412.Google Scholar
AUGSPURGER, C. K. 1986. Morphology and dispersal potential of wind-dispersed diaspores of neotropical trees. American Journal of Botany 73:353363.CrossRefGoogle Scholar
BASABOSE, A. K. 2002. Diet composition of chimpanzees inhabiting the montane forest of Kahuzi, Democratic Republic of Congo. American Journal of Primatology 58:121.Google Scholar
BOUDREAU, S. & LAWES, M. J. 2008. Density-and distance-dependent seedling survival in a ballistically dispersed subtropical tree species Philenoptera sutherlandii . Journal of Tropical Ecology 24:18.Google Scholar
BREITBACH, N., BÖHNING-GAESE, K., LAUBE, I. & SCHLEUNING, M. 2012. Short seed-dispersal distances and low seedling recruitment in farmland populations of bird-dispersed cherry trees. Journal of Ecology 100:13491358.Google Scholar
BROCKELMAN, W. Y., NATHALANG, A. & GALE, G. A. 2011. The Mo Singto forest dynamics plot, Khao Yai National Park, Thailand. Natural History Bulletin of the Siam Society 57:3555.Google Scholar
BRUIJNZEEL, L. A. & VENEKLAAS, E. J. 1998. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79:39.Google Scholar
BRUIJNZEEL, L. A., SCATENA, F. N. & HAMILTON, L. S. 2010. Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge. 768 pp.Google Scholar
BUITRÓN-JURADO, G. & RAMÍREZ, N. 2014. Dispersal spectra, diaspore size and the importance of endozoochory in the equatorial Andean montane forests. Flora 209:299311.Google Scholar
BURGESS, N. D., BUTYNSKI, T. M., CORDEIRO, N. J., DOGGART, N. H., FJELDSÅ, J., HOWELL, K. M., KILAHAMA, F. B., LOADER, S. P., LOVETT, J. C., MBILINYI, B., MENEGON, M., MOYER, D. C., NASHANDA, E., PERKIN, A., ROVERO, F., STANLEY, W. T. & STUART, S. N. 2007.The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biological Conservation 134:209231.Google Scholar
BUSSMANN, R. W. 2004. Regeneration and succession patterns in African, Andean and Pacific tropical mountain forests: the role of natural and anthropogenic disturbance. Lyonia 6:93111.Google Scholar
CALDECOTT, J. O. 1980. Habitat quality and populations of two sympatric gibbons (Hylobatidae) on a mountain in Malaya. Folia Primatologica 33:291309.Google Scholar
CANALE, G. R., PERES, C. A., GUIDORIZZI, C. E., GATTO, C. A. F. & KIERULFF, M. C. M. 2012. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS ONE 7:e41671.CrossRefGoogle Scholar
CANNON, C. H. 2001. Morphological and molecular diversity in Lithocarpus (Fagaceae) of Mount Kinabalu. Sabah Parks Nature Journal 4:4569.Google Scholar
CARBUTT, C., EDWARDS, T., FYNN, R. W. S. & BECKETT, R. P. 2013. Evidence for temperature limitation of nitrogen mineralisation in the Drakensberg Alpine Centre. South African Journal of Botany 88:447454.Google Scholar
CARLQUIST, S. 1966. The biota of long-distance dispersal. III. Loss of dispersibility in the Hawaiian flora. Brittonia 18:310335.Google Scholar
CHAPMAN, C. A. & RUSSO, S. E. 2007. Primate seed dispersal: linking behavioural ecology with forest community structure. Pp. 510525 in Campbell, C. J., Fuentes, A. F., MacKinnon, K. C., Panger, M. & Bearder, S. (eds.). Primates in perspective. Oxford University Press, Oxford.Google Scholar
CHAPMAN, H. M., OLSEN, S. M. & TRUMM, D. 2004. An assessment of changes in the montane forests of Taraba State, Nigeria, over the past 30 years. Oryx 38:282290.Google Scholar
CHAPMAN, J. D. & WHITE, F. 1970. The evergreen forests of Malawi. Commonwealth Forestry Institute, University of Oxford, Oxford. 190 pp.Google Scholar
CHAPMAN, J. D. & CHAPMAN, H. M. 2001. The forests of Taraba and Adamawa States Nigeria. An ecological account and plant species checklist. University of Canterbury Press, Christchurch. 221 pp.Google Scholar
CHARLES-DOMINIQUE, P. 1995. Food distribution and reproductive constraints in the evolution of social structure: nocturnal primates and other mammals. Pp. 425438 in Alterman, L., Doyle, G. A. & Izard, K. M. (eds.). Creatures of the dark: the nocturnal prosimians. Plenum, New York.Google Scholar
CHEN, X., CANNON, C. H. & CONKLIN-BRITTAN, N. L. 2012. Evidence for a trade-off strategy in stone oak (Lithocarpus) seeds between physical and chemical defense highlights fiber as an important antifeedant. PLoS ONE 7:e32890.Google Scholar
CLARK, C. J., POULSEN, J. R., BOLKER, B. M., CONNOR, E. F. & PARKER, V. T. 2005. Comparative seed shadows of bird-, monkey-, and wind-dispersed trees. Ecology 86:26842694.Google Scholar
COATES PALGRAVE, K. 2003. Trees of Southern Africa. (Third edition). New Holland Publishers, Cape Town. 1212 pp.Google Scholar
COCHRANE, E. P. 2003. The need to be eaten: Balanites wilsoniana with and without elephant seed-dispersal. Journal of Tropical Ecology 19:579589.Google Scholar
COLWELL, R. K. & LEES, D. C. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution 15:7076.Google Scholar
COMITA, L. S., MULLER-LANDAU, H. C., AGUILAR, S. & HUBBELL, S. P. 2010. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 32:330332.Google Scholar
CONNELL, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in forest trees. Pp. 298312 in den Boer, P. J. & Gradwell, G. R. (eds.). Dynamics of populations. Centre for Agricultural Publishing and Documentation, Wageningen.Google Scholar
CORDEIRO, N. J. & HOWE, H. F. 2003. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree. Proceedings of the National Academy of Sciences, USA 100:1405214056.Google Scholar
CORDEIRO, N. J., BURGESS, N. D., DOVIE, D. B., KAPLIN, B. A., PLUMPTRE, A. J. & MARRS, R. 2007. Conservation in areas of high population density in sub-Saharan Africa. Biological Conservation 134:155163.Google Scholar
CORDEIRO, N. J., NDANGALASI, H. J., MCENTEE, J. P. & HOWE, H. F. 2009. Disperser limitation and recruitment of an endemic African tree in a fragmented landscape. Ecology 90:10301041.Google Scholar
CORLETT, R. T. 2007. The impact of hunting on the mammalian fauna of tropical Asian forests. Biotropica 39:292303.Google Scholar
CORLETT, R. T. & PRIMACK, R. B. 2011. Tropical rain forests: an ecological and biogeographical comparison. John Wiley & Sons, Oxford. 336 pp.Google Scholar
CORREA, D. F., ÁLVAREZ, E. & STEVENSON, P. R. 2015. Plant dispersal systems in Neotropical forests: availability of dispersal agents or availability of resources for constructing zoochorous fruits? Global Ecology and Biogeography 24:203214.Google Scholar
CÔRTES, M. C. & URIARTE, M. 2013. Integrating frugivory and animal movement: a review of the evidence and implications for scaling seed dispersal. Biological Reviews 88:255272.Google Scholar
COX, G. W. 2010. Bird migration and global change. Island Press, Washington, DC. 304 pp.Google Scholar
CRAMER, J. M., MESQUITA, R. C. & WILLIAMSON, G. B. 2007. Forest fragmentation differentially affects seed dispersal of large and small-seeded tropical trees. Biological Conservation 137:415423.Google Scholar
CULMSEE, H., LEUSCHNER, C., MOSER, G. & PITOPANG, R. 2010. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography 37:960974.Google Scholar
DALLING, J. W. & HUBBELL, S. P. 2002. Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. Journal of Ecology 90:557568.Google Scholar
DALLING, J. W., HEINEMAN, K., GONZÁLEZ, G. & OSTERTAG, R. 2016. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests. Journal of Tropical Ecology. doi: http://dx.doi.org/10.1017/S0266467415000619.CrossRefGoogle Scholar
DEHLING, D. M., FRITZ, S. A., TÖPFER, T., PÄCKERT, M., ESTLER, P., BÖHNING-GAESE, K. & SCHLEUNING, M. 2014. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37:10471055.Google Scholar
DIMANNO, N. M. & OSTERTAG, R. 2016. Reproductive response to nitrogen and phosphorus fertilization along the Hawaiian archipelago's natural soil fertility gradient. Oecologia 180:245255.Google Scholar
DIRZO, R., YOUNG, H. S., GALETTI, M., CEBALLOS, G., ISAAC, N. J. B. & COLLEN, B. 2014. Defaunation in the Anthropocene. Science 345:401406.Google Scholar
DOUMENGE, C., GILMOUR, D., PÉREZ, M. R. & BLOCKHUS, J. 1995. Tropical montane cloud forests: conservation status and management issues. Pp 2437 in Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds.). Tropical montane cloud forests. Springer-Verlag, New York.CrossRefGoogle Scholar
DOWSETT-LEMAIRE, F. 1985. The forest vegetation of the Nyika Plateau (Malawi-Zambia): ecological and phenological studies. Bulletin du Jardin Botanique National de Belgique/Bulletin van de Nationale Plantentuin van Belgie 55:301392.Google Scholar
DUIVENVOORDEN, J. F. & CUELLO, N. L. 2012. Functional trait state diversity of Andean forests in Venezuela changes with altitude. Journal of Vegetation Science 23:11051113.Google Scholar
DUTTON, P., CHAPMAN, H. & MOLTCHANOVA, E. 2014. Secondary removal of seeds dispersed by chimpanzees in a Nigerian montane forest. African Journal of Ecology 52:438447.Google Scholar
EFFIOM, E. O., NUÑEZ-ITURRI, G., SMITH, H. G., OTTOSSON, U. & OLSSON, O. 2013. Bushmeat hunting changes regeneration of African rainforests. Proceedings of the Royal Society B: Biological Sciences 280:20130246.Google Scholar
EFFIOM, E. O., BIRKHOFER, K., SMITH, H. G. & OLSSON, O. 2014. Changes of community composition at multiple trophic levels due to hunting in Nigerian tropical forests. Ecography 37:367377.CrossRefGoogle Scholar
FAHEY, T. J., SHERMAN, R. E. & TANNER, E. V. J. 2016. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. Journal of Tropical Ecology. doi: http://dx.doi.org/10.1017/S0266467415000176.Google Scholar
FAO. 1993. Forest resources assessment 1990: tropical countries. Food and Agriculture Organization of the United Nations, Forestry Paper 112, Rome. 59 pp.Google Scholar
FARWIG, N., BÖHNING-GAESE, K. & BLEHER, B. 2006. Enhanced seed dispersal of Prunus africana in fragmented and disturbed forests? Oecologia 147:238252.CrossRefGoogle ScholarPubMed
FERGER, S. W., SCHLEUNING, M., HEMP, A., HOWELL, K. M. & BÖHNING-GAESE, K. 2014. Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecology and Biogeography 23:541549.Google Scholar
FORGET, P. M. 1996. Removal of seeds of Carapa procera (Meliaceae) by rodents and their fate in rainforest in French Guiana. Journal of Tropical Ecology 12:751761.Google Scholar
FOURRIER, M. S. 2013. The spatial and temporal ecology of seed dispersal by gorillas in Lopé National Park, Gabon: linking patterns of disperser behavior and recruitment in an Afrotropical forest. Washington University in St. Louis. 242 pp.Google Scholar
FRANKLIN, O., JOHANSSON, J., DEWAR, R. C., DIECKMANN, U., MCMURTRIE, R. E., BRÄNNSTRÖM, Å. & DYBZINSKI, R. 2012. Modeling carbon allocation in trees: a search for principles. Tree Physiology 32:648666.Google Scholar
FRIIS, I. 1992. Forests and forest trees of northeast tropical Africa: their natural habitats and distribution patterns in Ethiopia, Djibouti and Somalia. Kew Bulletin Additional Series Royal Botanic Gardens 15:1396.Google Scholar
GALETTI, M., DONATTI, C. I., PIRES, A. S., GUIMARAES, P. R. & JORDANO, P. 2006. Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Botanical Journal of the Linnean Society 151:141149.Google Scholar
GALLEGOS, S. C., HENSEN, I. & SCHLEUNING, M. 2014. Secondary dispersal by ants promotes forest regeneration after deforestation. Journal of Ecology 102:659666.Google Scholar
GANAS, J., ROBBINS, M., NKURUNUNGI, J., KAPLIN, B. & MCNEILAGE, A. 2004. Dietary variability of mountain gorillas in Bwindi Impenetrable National Park, Uganda. International Journal of Primatology 25:10431072.Google Scholar
GAUTIER-HION, A., DUPLANTIER, J. M., QURIS, R., FEER, F., SOURD, C., DECOUX, J. P., DUBOST, G., EMMONS, L., ERARD, C., HECKETSWEILER, P., MOUNGAZI, A., ROUSSILHON, C. & THIOLLAY, J. M. 1985. Fruit characteristics as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65:324337.Google Scholar
GEISE, L., PEREIRA, L. G., BOSSI, D. E. P. & BERGALLO, H. G. 2004. Pattern of elevational distribution and richness of non volant mammals in Itatiaia National Park and its surroundings, in southeastern Brazil. Brazilian Journal of Biology 64:599612.Google Scholar
GENTRY, A. H. 1992. Diversity and floristic composition of Andean forests of Peru and adjacent countries: implications for their conservation. Memorias del Museo de Historia Natural, UNMSM (Lima) 21:1129.Google Scholar
GENTRY, A. H. 1995. Diversity and floristic composition of neotropical dry forests. Pp. 146194 in Bullock, S. H., Mooney, H. A. & Medina, E. (eds.). Seasonally dry tropical forests. Cambridge University Press, Cambridge.Google Scholar
GIRALDO, P., GÓMEZ-POSADA, C., MARTÍNEZ, J. & KATTAN, G. 2007. Resource use and seed dispersal by red howler monkeys (Alouatta seniculus) in a Colombian Andean forest. Neotropical Primates 14:5564.Google Scholar
GONZALEZ, M. & STEVENSON, P. R. 2009. Patterns of daily movement, activities and diet in woolly monkeys (genus Lagothrix): a comparison between sites and methodologies. Pp. 171186 in Potoki, E. & Krasinski, J. (eds.). Primatology: theories, methods and research. Nova Science Publishers, New York.Google Scholar
GOODMAN, S. M. & RASOLONANDRASANA, B. P. 2001. Elevational zonation of birds, insectivores, rodents and primates on the slopes of the Andringitra Massif, Madagascar. Journal of Natural History 35:285305.CrossRefGoogle Scholar
GRAHAM, C., MARTÍNEZ-LEYVA, J. E. & CRUZ-PAREDES, L. 2002. Use of fruiting trees by birds in continuous forest and riparian forest remnants in Los Tuxtlas, Veracruz, Mexico. Biotropica 34:589597.Google Scholar
GREENE, D. F. & JOHNSON, E. A. 1989. A model of wind dispersal of winged or plumed seeds. Ecology 70:339347.Google Scholar
GRIFFITHS, M. E. & LAWES, M. J. 2006. Biogeographic, environmental, and phylogenetic influences on reproductive traits in subtropical forest trees, South Africa. Ecography 29:614622.Google Scholar
GRIMSHAW, J. M. 1998. Disturbance, pioneers and the Afromontane Archipelago. Pp. 207220 in Huxley, C. R., Lock, J. M. & Cutler, D.F. (eds.). Chorology, taxonomy and ecology of the floras of Africa and Madagascar. Royal Botanic Gardens, Kew.Google Scholar
GROSS-CAMP, N. D. & KAPLIN, B. A. 2011. Differential seed handling by two African primates affects seed fate and establishment of large-seeded trees. Acta Oecologica 37:578586.Google Scholar
GROSS-CAMP, N. D., MASOZERA, M. & KAPLIN, B. A. 2009. Chimpanzee seed dispersal quantity in a tropical montane forest of Rwanda. American Journal of Primatology 71:901911.Google Scholar
GROW, N., GURSKY, S. & DUMA, Y. 2013. Altitude and forest edges influence the density and distribution of pygmy tarsiers (Tarsius pumilus). American Journal of Primatology 75:464477.Google Scholar
GRUBB, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8:83107.Google Scholar
GRUBB, P. J. 1998. A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics 1:331.Google Scholar
GRUBB, P. J. & STEVENS, P. F. 1985. The forests of the Fatima Basin and Mt Kerigomna, Papua New Guinea, with a review of montane and subalpine rainforests in Papuasia. Australian National University, Canberra. 221 pp.Google Scholar
HAMANN, A. & CURIO, E. 1999. Interactions among frugivores and fleshy fruit trees in a Philippine submontane rainforest. Conservation Biology 13:766773.Google Scholar
HAMANN, A., BARBON, E. B., CURIO, E. & MADULID, D. A. 1999. A botanical inventory of a submontane tropical rainforest on Negros island, Philippines. Biodiversity and Conservation 8:10171031.Google Scholar
HAMILTON, A. C. 1975. A quantitative analysis of altitudinal zonation in Uganda forests. Vegetatio 30:99106.Google Scholar
HAMILTON, A. 1998. Vegetation, climate and soil: altitudinal relationships on the East Usambara Mountains, Tanzania. Journal of East African Natural History 87:8589.Google Scholar
HAMILTON, A. C. & BENSTED-SMITH, R. (eds.). 1989. Forest conservation in the East Usambara mountains, Tanzania. IUCN, Gland. 392 pp.Google Scholar
HARCOURT, A. H., COPPETO, S. A. & PARKS, S. A. 2002. Rarity, specialization and extinction in primates. Journal of Biogeography 29:445456.Google Scholar
HBW. 1992–2013. Handbook of the birds of the world (17 volumes). Lynx Edicions, Barcelona.Google Scholar
HEANEY, L. R. 2001. Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography 10:1539.Google Scholar
HEANEY, L. R., HEIDEMAN, P. D., RICKART, E. A., UTZURRUM, R. B. & KLOMPEN, J. S. H. 1989. Elevational zonation of mammals in the central Philippines. Journal of Tropical Ecology 5:259280.Google Scholar
HOMEIER, J., BRECKLE, S. W., GÜNTER, S., ROLLENBECK, R. T. & LEUSCHNER, C. 2010. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140148.Google Scholar
HOWE, H. F. 1990. Seed dispersal by birds and mammals: implications for seedling demography. Pp. 191218 in Bawa, K. S. & Hadley, M. (eds.). Reproductive ecology of tropical forest plants. Man and the Biosphere Series Vol. 7, UNESCO, Paris and Parthenon Publishing, Carnforth.Google Scholar
HOWE, H. F. & SMALLWOOD, J. 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics 13:201228.Google Scholar
HUBBELL, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton. 392 pp.Google Scholar
HURTT, G. C. & PACALA, S. W. 1995. The consequences of recruitment limitation: reconciling chance, history and competitive differences between plants. Journal of Theoretical Biology 176:112.Google Scholar
INGLE, N. R. 2003. Seed dispersal by wind, birds, and bats between Philippine montane rainforest and successional vegetation. Oecologia 134:251261.Google Scholar
JANSON, C. H. 1992. Measuring evolutionary constraints: a Markov model for phylogenetic transitions among seed dispersal syndromes. Evolution 46:136158.Google Scholar
JANZEN, D. H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist 104:501528.Google Scholar
JIANG, X., LUO, Z., ZHAO, S., LI, R. & LIU, C. 2006. Status and distribution pattern of black crested gibbon (Nomascus concolor jingdongensis) in Wuliang Mountains, Yunnan, China: implication for conservation. Primates 47:264271.Google Scholar
JORDANO, P. 1992. Fruits and frugivory. Pp. 105156 in Fenner, M. (ed.). Seeds: the ecology of regeneration in natural plant communities. CABI, Wallingford.Google Scholar
JORDANO, P. 1995. Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions. American Naturalist 145:163191.Google Scholar
JORDANO, P., GARCIA, C., GODOY, J. A. & GARCIA-CASTANO, J. L. 2007. Differential contribution of frugivores to complex seed dispersal patterns. Proceedings of the National Academy of Sciences USA 104:3278–3282.Google Scholar
KANZAKI, M., HARA, M., YAMAKURA, T., OHKUBO, T., TAMURA, M. N., SRI-NGEMYUANG, K., SAHUNALU, P., TEEJUNTUK, S. & BUNYAVEJCHEWIN, S. 2004. Doi Inthanon forest dynamics plot. Thailand . Pp. 474481 in Losos, E. C. & Leigh, E. G. (eds.). Forest diversity and dynamism: findings from a large-scale plot network. University of Chicago Press. Chicago.Google Scholar
KAPPELLE, M., CLEEF, A. M. & CHAVERRI, A. 1992. Phytogeography of Talamanca montane Quercus forests, Costa Rica. Journal of Biogeography 19:299315.Google Scholar
KIMURA, K., YUMOTO, T. & KIKUZAWA, K. 2001. Fruiting phenology of fleshy-fruited plants and seasonal dynamics of frugivorous birds in four vegetation zones on Mt. Kinabalu, Borneo. Journal of Tropical Ecology 17:833858.Google Scholar
KITAYAMA, K. & ITOW, S. 1999. Aboveground biomass and soil nutrient pools of a Scalesia pedunculata montane forest on Santa Cruz, Galápagos. Ecological Research 14:405408.Google Scholar
KNIGHT, A., CHAPMAN, H. M. & HALE, M. 2015. Habitat fragmentation and its implications for endangered chimpanzee Pan troglodytes conservation. Oryx. doi: http://dx.doi.org/10.1017/S0030605315000332.Google Scholar
KÖRNER, C. H. 2007. The use of “altitude” in ecological research. Trends in Ecology and Evolution 22:569574.Google Scholar
KURTEN, E. L. 2013. Cascading effects of contemporaneous defaunation on tropical forest communities. Biological Conservation 163:2232.Google Scholar
LAMBERS, J. H. R., CLARK, J. S. & BECKAGE, B. 2002. Density-dependent mortality and the latitudinal gradient in species diversity. Nature 417:732735.Google Scholar
LAMBERT, J. E. & GARBER, P. A. 1998. Evolutionary and ecological implications of primate seed dispersal. American Journal of Primatology 45:928.Google Scholar
LAURANCE, W. F., NASCIMENTO, H. E. M., LAURANCE, S. G., ANDRADE, A. C., FEARNSIDE, P. M., RIBEIRO, J. E. L. & CAPRETZ, R. L. 2006. Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469482.Google Scholar
LAWES, M. J., JOUBERT, R., GRIFFITHS, M. E., BOUDREAU, S. & CHAPMAN, C. A. 2007. The effect of the spatial scale of recruitment on tree diversity in Afromontane forest fragments. Biological Conservation 139:447456.Google Scholar
LEHOUCK, V., SPANHOVE, T., COLSON, L., ADRINGA-DAVIS, A., CORDEIRO, N. J. & LENS, L. 2009. Habitat disturbance reduces seed dispersal of a forest interior tree in a fragmented African cloud forest. Oikos 118:10231034.Google Scholar
LEIGHTON, M. & LEIGHTON, D. R. 1983. Vertebrate responses to fruiting seasonality within a Bornean rain forest. Pp. 181196 in Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds.). Tropical rain forest: ecology and management. Blackwell Scientific Publications, Oxford.Google Scholar
LEISHMAN, M. R. & WESTOBY, M. 1994. The role of seed size in seedling establishment in dry soil conditions – experimental evidence from semi-arid species. Journal of Ecology 82:249258.Google Scholar
LEVEY, D. J. 1986. Methods of seed processing by birds and seed deposition patterns. Pp 147158 in Estrada, A. & Fleming, T. H. (eds.). Frugivores and seed dispersal. Dr. W. Junk, Dordrecht.Google Scholar
LOISELLE, B. A. & BLAKE, J. G. 1991. Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology 72:180193.Google Scholar
LORD, J., EGAN, J., CLIFFORD, T., JURADO, E., LEISHMAN, M., WILLIAMS, D. & WESTOBY, M. 1997. Larger seeds in tropical floras: consistent patterns independent of growth form and dispersal mode. Journal of Biogeography 24:205211.Google Scholar
LOVETT, J. C. 1998. Eastern tropical African centre of endemism: a candidate for World Heritage Status. Journal of East African Natural History 87:359366.Google Scholar
MAISELS, F., KEMING, E., KEMEI, M. & TOH, C. 2001. The extirpation of large mammals and implications for montane forest conservation: the case of the Kilum-Ijim Forest, North-west Province, Cameroon. Oryx 35:322331.Google Scholar
MARKL, J. S., SCHLEUNING, M., FORGET, P. M., JORDANO, P., LAMBERT, J. E., TRAVESET, A., WRIGHT, S. J. & BÖHNING-GAESE, K. 2012. Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conservation Biology 26:10721081.Google Scholar
MARSHALL, A. R., TOPP-JØRGENSEN, J. E., BRINK, H. & FANNING, E. 2005. Monkey abundance and social structure in two high-elevation forest reserves in the Udzungwa Mountains of Tanzania. International Journal of Primatology 26:127145.Google Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2007. Tropical montane forest ecotones: climate gradients, natural disturbance, and vegetation zonation in the Cordillera Central, Dominican Republic. Journal of Biogeography 34:17921806.Google Scholar
MARTIN, P. H., FAHEY, T. J. & SHERMAN, R. E. 2011. Vegetation zonation in a Neotropical montane forest: environment, disturbance and ecotones. Biotropica 43:533543.Google Scholar
MATTHESIUS, A. 2006. Testing the Janzen–Connell model for species diversity in a West African montane forest. MSc Thesis, University of Canterbury, New Zealand. 115 pp.Google Scholar
MATTHESIUS, A., CHAPMAN, H. & KELLY, D. 2011. Testing for Janzen–Connell effects in a West African montane forest. Biotropica 43:7783.CrossRefGoogle Scholar
MAY, F., HUTH, A. & WIEGAND, T. 2015. Moving beyond abundance distributions: neutral theory and spatial patterns in a tropical forest. Proceedings of the Royal Society of London B: Biological Sciences 282:20141657.Google Scholar
MCCAIN, C. M. 2004. The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. Journal of Biogeography 31:1931.Google Scholar
MCGILL, B. J., ENQUIST, B. J., WEIHER, E. & WESTOBY, M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21:178185.Google Scholar
MENG, L., GAO, X., CHEN, J. & MARTIN, K. 2012. Spatial and temporal effects on seed dispersal and seed predation of Musa acuminata in southern Yunnan, China. Integrative Zoology 7:3040.Google Scholar
MERLIN, M. D. & JUVIK, J. O. 1995. Montane cloud forest in the tropical Pacific: some aspects of their floristics, biogeography, ecology, and conservation. Pp. 234253 in Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds.). Tropical montane cloud forests. Springer-Verlag, New York.Google Scholar
MIDGLEY, J. & BOND, W. 1989. Leaf size and inflorescence size may be allometrically related traits. Oecologia 78:427429.Google Scholar
MITTERMEIER, R. A., ROBLES-GIL, P., HOFFMANN, M., PILGRIM, J. D., BROOKS, T. B., MITTERMEIER, C. G., LAMOREUX, J. L. & FONSECA, G. A. B. 2004. Hotspots revisited: earth's biologically richest and most endangered ecoregions. (Second Edition). CEMEX, Mexico City. 390 pp.Google Scholar
MOERMOND, T. C. & DENSLOW, J. S. 1985. Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection. Ornithological Monographs 36:865897.Google Scholar
MOLES, A. T. & WESTOBY, M. 2004. Seedling survival and seed size: a synthesis of the literature. Journal of Ecology 92:372383.Google Scholar
MOREIRA, J. C., MANDUCA, E. G., GONÇALVES, P. R., MORAIS, M. D. JR, PEREIRA, R. F., LESSA, G. & DERGAM, J. A. 2009. Small mammals from Serra do Brigadeiro State Park, Minas Gerais, southeastern Brazil: species composition and elevational distribution. Arquivos do Museu Nacional, Rio de Janeiro 67:103118.Google Scholar
MULLER-LANDAU, H. C., WRIGHT, S. J., CALDERÓN, O., CONDIT, R. & HUBBELL, S. P. 2008. Interspecific variation in primary seed dispersal in a tropical forest. Journal of Ecology 96:653667.Google Scholar
MURRAY, K. G. 1988. Avian seed dispersal of three neotropical gap-dependent plants. Ecological Monographs 58:271298.CrossRefGoogle Scholar
MURRAY, K. G., KINSMAN, S. & BRONSTEIN, J. S. 2000. Plant–animal interactions. Pp. 245267 in Nadkarni, N. & Wheelwright, N. (eds.). Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, Oxford.Google Scholar
MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., FONSECA, G. A. B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853858.Google Scholar
NADKARNI, N. M. & WHEELWRIGHT, N. T. 2000. Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, Oxford. 608 pp.Google Scholar
NATHAN, R. 2006. Long-distance dispersal of plants. Science 313:786788.Google Scholar
NEWMARK, W. D. 1991. Tropical forest fragmentation and the local extinction of understory birds in the eastern Usambara Mountains, Tanzania. Conservation Biology 5:6778.Google Scholar
NUÑEZ-ITURRI, G. & HOWE, H. F. 2007. Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in western Amazonia. Biotropica 39:348354.Google Scholar
NYIRAMANA, A., MENDOZA, I., KAPLIN, B. A. & FORGET, P. M. 2011. Evidence for seed dispersal by rodents in tropical montane forest in Africa. Biotropica 43:654657.Google Scholar
PADMAWATHE, R., QURESHI, Q. & RAWAT, G. S. 2004. Effects of selective logging on vascular epiphyte diversity in a moist lowland forest of Eastern Himalaya, India. Biological Conservation 119:8192.Google Scholar
PATTANAVIBOOL, A. & DEARDEN, P. 2002. Fragmentation and wildlife in montane evergreen forests, northern Thailand. Biological Conservation 107:155164.Google Scholar
PATTERSON, B. D., PACHECO, V. & SOLARI, S. 1996. Distribution of bats along an elevational gradient in the Andes of south-eastern Peru. Journal of Zoology 240:637658.Google Scholar
PAYNE, J., FRANCIS, C. M. & PHILLIPS, K. 1985. A field guide to the mammals of Borneo. The Sabah Society, WWF Malaysia, Kota Kinabaru, Kuala Lumpur. 332 pp.Google Scholar
RAMÍREZ, M. A., MÓNICA, A., GALVIS, N. F., VARGAS, S. A., LÉON, J. J., CIFUENTES, E. F. & STEVENSON, P. R. 2014. Seed dispersal by woolly monkeys in Cueva de los Guacharos National Park (Colombia): an Amazonian primate dispersing montane plants. Pp. 103114 in Grow, N. B., Gursky-Doyen, S. & Krzton, A. (eds.). High altitude primates. Springer Science+Business Media, New York.Google Scholar
RENJIFO, L. M. 1999. Composition changes in a subandean avifauna after long-term forest fragmentation. Conservation Biology 13:11241139.Google Scholar
RODRÍGUEZ, M. Á., OLALLA-TÁRRAGA, M. Á., & HAWKINS, B. A. 2008. Bergmann's rule and the geography of mammal body size in the Western Hemisphere. Global Ecology and Biogeography 17:274283.Google Scholar
ROTHMAN, J. M., NKURUNUNGI, J. B., SHANNON, B. F. & BRYER, M. A. 2014. High altitude diets: implications for the feeding and nutritional ecology of mountain gorillas. Pp. 247264 in Grow, N. B., Gursky-Doyen, S. & Krzton, A. (eds.). High altitude primates. Springer Science+Business Media, New York.Google Scholar
RUXTON, G. D. & SCHAEFER, H. M. 2012. The conservation physiology of seed dispersal. Philosophical Transactions of the Royal Society of London B: Biological Sciences 367:17081718.Google Scholar
SCATENA, F. N., BRUIJNZEEL, L. A., BUBB, P. & DAS, S. 2010. Setting the stage. Pp. 313 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L.S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
SCHEFFERS, B. R., CORLETT, R. T., DIESMOS, A. & LAURANCE, W. F. 2012. Local demand drives a bushmeat industry in a Philippine forest preserve. Tropical Conservation Science 5:133141.Google Scholar
SCHMITT, C. B., DENICH, M., DEMISSEW, S., FRIIS, I. & BOEHMER, H. J. 2010. Floristic diversity in fragmented Afromontane rainforests: altitudinal variation and conservation importance. Applied Vegetation Science 13:291304.Google Scholar
SCHRÖTER, D., CRAMER, W., LEEMANS, R., PRENTICE, I. C., ARAÚJO, M. B., ARNELL, N. W., BONDEAU, A., BUGMANN, H., CARTER, T. R., GRACIA, C. A. & ANNE, C. 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310:13331337.Google Scholar
SCHUPP, E. W. 1993. Quantity, quality and the effectiveness of seed dispersal by animals. Pp. 1529 in Fleming, T. H. & Estrada, A (eds.). Frugivory and seed dispersal: ecological and evolutionary aspects. Springer, Dordrecht.Google Scholar
SEIDLER, T. G. & PLOTKIN, J. B. 2006. Seed dispersal and spatial pattern in tropical trees. PLoS Biology 4:e344.Google Scholar
SELTZER, C. E., KREMER, C. T., NDANGALASI, H. J. & CORDEIRO, N. J. 2015. Seed harvesting of a threatened African tree dispersed by rodents: is enrichment planting a solution? Global Ecology and Conservation 3:645653.Google Scholar
SHANEE, N. 2012. Trends in local wildlife hunting, trade and control in the Tropical Andes Biodiversity Hotspot, northeastern Peru. Endangered Species Research 19:177–86.Google Scholar
SHANEE, S. 2009. Modelling spider monkeys Ateles spp. Gray, 1825: ecological responses and conservation implications to increased elevation. Journal of Threatened Taxa 1:450456.Google Scholar
SHANEE, S. 2014. Ranging behaviour, daily path lengths, diet and habitat use of yellow tailed woolly monkeys (Oreonax flavicauda) at La Esperanza, Peru. Pp. 167186 in Defler, T. R. & Stevenson, P. R. (eds.). The woolly monkey: behaviour, ecology, conservation and systematics. Springer Verlag, New York.Google Scholar
SPRACKLEN, D. V. & RIGHELATO, R. 2014. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11:27412754.Google Scholar
STEINMETZ, R., CHUTIPONG, W., SEUATURIEN, N. & CHIRNGSAARD, E. 2008. Community structure of large mammals in tropical montane and lowland forest in the Tenasserim-Dawna Mountains, Thailand. Biotropica 40:344353.Google Scholar
SUGDEN, A. M. 1982. The ecological geographic and taxonomic relationships of the flora of an isolated Colombian cloud forest, with some implications for island biogeography. Journal of the Arnold Arboretum 63:3161.Google Scholar
TABARELLI, M., PERES, C. A. & MELO, F. P. L. 2012. The ‘few winners and many losers’ paradigm revisited: emerging prospects for tropical forest biodiversity. Biological Conservation 155:136140.Google Scholar
TANNER, E. V. J. 1982. Breeding systems in a tropical forest in Jamaica. Biological Journal of the Linnean Society 18:263278.Google Scholar
TANNER, E. V. J., VITOUSEK, P. M. & CUEVAS, E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:1022.Google Scholar
TERBORGH, J. 1977. Bird species diversity on an Andean elevational gradient. Ecology 58:10071019.Google Scholar
TERBORGH, J., NUÑEZ-ITURRI, G., PITMAN, N. C. A., VALVERDE, F. H. C., ALVAREZ, P., SWAMY, V., PRINGLE, E. G. & PAINE, C. E. T. 2008. Tree recruitment in an empty forest. Ecology 89:17571768.Google Scholar
TOPP-JØRGENSEN, E., NIELSEN, M. R., MARSHALL, A. & PEDERSEN, U. 2009. Mammalian density in response to different levels of bushmeat hunting in the Udzungwa Mountains, Tanzania. Tropical Conservation Science 2:7087.Google Scholar
TWINOMUGISHA, D., CHAPMAN, C. A., LAWES, M. J., WORMAN, C. O. & DANISH, L. M. 2006. How does the golden monkey of the Virungas cope in a fruit-scarce environment? Pp. 4560 in Newton-Fisher, N. E., Notman, H., Reynolds, V. & Paterson, J. D. (eds). Primates of western Uganda. Springer, New York.Google Scholar
VÁZQUEZ-G., J. A. & GIVNISH, T. J. 1998. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. Journal of Ecology 86:9991020.Google Scholar
WANG, B. C. & SMITH, T. B. 2002. Closing the seed dispersal loop. Trends in Ecology and Evolution 17:379386.Google Scholar
WEBB, L. J., TRACEY, J. G. & JESSUP, L. W. 1986. Recent evidence for autochthony of Australian tropical and subtropical rainforest floristic elements. Telopea 2:575589.Google Scholar
WENNY, D. G. 2000. Seed dispersal, seed predation, and seedling recruitment of a neotropical montane tree. Ecological Monographs 70:331351.Google Scholar
WENNY, D. G. & LEVEY, D. J. 1998. Directed seed dispersal by bellbirds in a tropical cloud forest. Proceedings of the National Academy of Sciences, USA 95:62046207.Google Scholar
WENNY, D. G., SEKERCIOGLU, C. H., CORDEIRO, N. J., ROGERS, H. S. & KELLY, D. 2016. Seed dispersal by fruit-eating birds. Pp. 107145 in Sekercioglu, C. H., Wenny, D. G. & Whelan, C. J. (eds). Why birds matter: avian ecological function and ecosystem services. University of Chicago Press, Chicago.Google Scholar
WETHERED, R. & LAWES, M. J. 2003. Matrix effects on bird assemblages in fragmented Afromontane forests in South Africa. Biological Conservation 114:327340.Google Scholar
WHEELWRIGHT, N. T. 1985. Fruit-size, gape width, and the diets of fruit-eating birds. Ecology 66:808818.Google Scholar
WHEELWRIGHT, N. T. & ORIANS, G. H. 1982. Seed dispersal by animals: contrasts with pollen dispersal, problems of terminology, and constraints on coevolution. American Naturalist 119:402413.Google Scholar
WHITE, F. 1983. The vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. Paris, UNESCO. 356 pp.Google Scholar
WHITTAKER, R. H. & NIERING, W. A. 1975. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology 56:771790.Google Scholar
WILLIG, M. R. & PRESLEY, S. J. 2016. Biodiversity and metacommunity structure of animals along altitudinal gradients in tropical montane forests. Journal of Tropical Ecology. doi: http://dx.doi.org/10.1017/S0266467415000589.Google Scholar
WRIGHT, D. D. 2005. Diet, keystone resources, and altitudinal movement of dwarf cassowaries in relation to fruiting phenology in a Papua New Guinean rainforest. Pp. 205236 in Dew, J. L. & Boubli, J. P. (eds). Tropical fruits and frugivores: the search for strong interactors. Springer, Dordrecht.Google Scholar
WRIGHT, S. J. 2003. The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspectives in Plant Ecology, Evolution and Systematics 6:7386.Google Scholar
WRIGHT, I. J., ACKERLY, D. D., BONGERS, F., HARMS, K. E., IBARRA-MANRIQUEZ, G., MARTINEZ-RAMOS, M., MAZER, S. J., MULLER-LANDAU, H. C., PAZ, H., PITMAN, N. C. A., POORTER, L., SILMAN, M., VRIESENDORP, C. F., WEBB, C. O., WESTOBY, M. & WRIGHT, S. J. 2007. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany 99:10031015.Google Scholar
XU, M. & YU, S. 2014. Elevational variation in density dependence in a subtropical forest. Ecology and Evolution 4:28232833.Google Scholar
YAMAGIWA, J. & BASABOSE, A. K. 2006. Diet and seasonal changes in sympatric gorillas and chimpanzees at Kahuzi-Biega National Park. Primates 47:7490.Google Scholar
YEPES, A., HERRERA, J., PHILLIPS, J., CABRERA, E., GALINDO, G., GRANADOS, E., DUQUE, Á., BARBOSA, A., OLARTE, C. & CARDONA, M. 2015. Contribution of tropical upland forests to carbon storage in Colombia. Revista de Biología Tropical 63:6982.Google Scholar
ZHU, K., WOODALL, C. W., MONTEIRO, J. V. D. & CLARK, J. S. 2015. Prevalence and strength of density-dependent tree recruitment. Ecology 96:23192327.Google Scholar
ZHUANG, L., TIAN, Z., CHEN, Y., LI, W., LI, J. & LU, S. 2012. Community characteristics of wild fruit forests along elevation gradients and the relationships between the wild fruit forests and environments in the Keguqin Mountain region of Iii. Journal of Mountain Science 9:115126.Google Scholar