Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T20:23:19.972Z Has data issue: false hasContentIssue false

The functional roles of epiphytes and arboreal soils in tropical montane cloud forests

Published online by Cambridge University Press:  13 July 2016

Sybil G. Gotsch*
Affiliation:
Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17603USA
Nalini Nadkarni
Affiliation:
Department of Biology, University of Utah, Salt Lake City, Utah 84112USA
Autumn Amici
Affiliation:
Department of Biology, University of Utah, Salt Lake City, Utah 84112USA
*
1Corresponding author. Email: sybil.gotsch@fandm.edu

Abstract:

Epiphytes and their associated decomposing litter and arboreal soils (herein, epiphytic material, EM) are ubiquitous features of tropical montane cloud forests (TMCF) and play important roles in ecosystem function. EM intercepts water and nutrients from the atmosphere and from intercepted host tree sources, and may contribute significant inputs of these resources to the forest floor. Despite the importance of EM in the TMCF, a systematic review of the ecosystem roles of EM has not been compiled before. We have synthesized the literature that documents functions of EM in undisturbed TMCFs and discuss how these roles may be affected by disturbances, including changes in climate and land use. The range of EM biomass and water storage in the TMCF varies greatly across sites, with different amounts associated with stand age and microclimate. EM is important as habitat and food for birds and mammals, with over 200 species of birds documented as using EM in the Neotropics. Given its sensitivity to moisture, projected shifts in cloud base heights or precipitation due to changes in climate will likely have a large impact on this community and changes in EM diversity or abundance may have cascading impacts on the ecosystem function of the TMCF.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACKERMAN, J. D. 1986. Coping with the epiphytic existence: pollination strategies. Selbyana 9:5260.Google Scholar
AFFELD, K., SULLIVAN, J., WORNER, S. P. & DIDHAM, R. K. 2008. Can spatial variation in epiphyte diversity and community structure be predicted from sampling vascular epiphytes alone? Journal of Biogeography 35:22742288.Google Scholar
ALDRICH, M., BUBB, P., HOSTETTLER, S. & VAN DE WEIL, H. 2000. Tropical montane cloud forests: time for action. WWF International, IUCN, Gland. 28 pp.Google Scholar
BENZING, D. 1990. Vascular epiphytes. Cambridge University Press, Cambridge. 376 pp.Google Scholar
BOHLMAN, S., MATELSON, T. J. & NADKARNI, N. M. 1995. Moisture and temperature patterns of canopy humus and forest floor soils of a montane cloud forest, Costa Rica. Biotropica 27:1319.Google Scholar
BOUCHER, V. L. & NASH, T. H. 1990. The role of the fruiticose lichen Ramalina menziesii in the annual turnover of biomass and macronutrients in a Blue Oak woodland. Botanical Gazette 151:114118.Google Scholar
BRUIJNZEEL, L. A. & PROCTOR, J. 1995. Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know? Ecological Studies 110:3878.Google Scholar
BRUIJNZEEL, L. A., SCATENA, F. & HAMILTON, L. (eds.). 2010. Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge. 768 pp.Google Scholar
BUSH, S. P. & BEACH, J. H. 1995. Breeding systems of epiphytes in a tropical montane wet forest. Selbyana 16:155158.Google Scholar
CARDELÚS, C. L. & MACK, M. 2010. The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica. Plant Ecology 207:2537.CrossRefGoogle Scholar
CARROLL, G. 1980. Forest canopies: complex and independent subsystems. Pp. 87107 in Waring, R. H. (ed). Forests: fresh perspectives from ecosystem analysis: proceedings of the 40th annual biology colloquium. Oregon State University Press, Corvallis.Google Scholar
CASCANTE-MARÍN, A., OOSTERMEIJER, J. G. B., WOLF, J. H. D. & DEN NIJS, J. C. M. 2005. Reproductive biology of the epiphytic bromeliad Werauhia gladioliflora in a premontane tropical forest. Plant Biology 7:203209.CrossRefGoogle Scholar
CAVELIER, J., JARAMILLO, M., SOLIS, D. & DE LEÓN, D. 1997. Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. Journal of Hydrology 193:8396.CrossRefGoogle Scholar
CÉRÉGHINO, R., LEROY, C., DEJEAN, A. & CORBARA, B. 2010. Ants mediate the structure of phytotelm communities in an ant-garden bromeliad. Ecology 91:15491556.CrossRefGoogle Scholar
CHEN, L., LIU, W. & WANG, G. 2010. Estimation of epiphytic biomass and nutrient pools in the subtropical montane cloud forest in the Ailao Mountains, south-western China. Ecological Research 25:315325.Google Scholar
CLARK, K., NADKARNI, N., SCHAEFER, D. & GHOLZ, H. 1998a. Cloud water and precipitation chemistry in a tropical montane forest, Monteverde, Costa Rica. Atmospheric Environment 32:15951603.Google Scholar
CLARK, K. L., NADKARNI, N. & GHOLZ, H. L. 1998b. Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. Journal of Tropical Ecology 14:2745.Google Scholar
CLARK, K., NADKARNI, N. & GHOLZ, H. 2005. Retention of inorganic nitrogen by epiphytic bryophytes in a tropical montane forest. Biotropica 37:328336.Google Scholar
COXSON, D. & NADKARNI, N. 1995. Ecological roles of epiphytes in nutrient cycles of forest ecosystems. Pp. 495543 in Lowman, M. & Nadkarni, N. (eds.). Forest canopies. Academic Press, San Diego.Google Scholar
FONTOURA, T., CAZETTA, E., NASCIMENTO, W. D., CATENACCI, L., DE VLEESCHOUWER, K. & RABOY, B. 2010. Diurnal frugivores on the Bromeliaceae Aechmea depressa L.B. Sm. from Northeastern Brazil: the prominent role taken by a small forest primate. Biota Neotropica 10:351354.CrossRefGoogle Scholar
FORMAN, R. T. T. 1975. Canopy lichens with blue-green algae: a nitrogen source in a Colombian rain forest. Ecology 56:11761184.Google Scholar
GANNON, B. & MARTIN, P. H. 2014. Reconstructing hurricane disturbance in a tropical montane forest landscape in the Cordillera Central, Dominican Republic: implications for vegetation patterns and dynamics. Arctic, Antarctic, and Alpine Research 46:767776.Google Scholar
GENTRY, A. H. & DODSON, C. 1987a. Contribution of non-trees to species richness of a tropical rain forest. Biotropica 19:149156.CrossRefGoogle Scholar
GENTRY, A. H. & DODSON, C. 1987b. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Gardens 74:204233.CrossRefGoogle Scholar
GOLLEY, F. B., MCGINNIS, J. T. & CLEMENTS, R. G. 1971. Biomass and mineral structure of some forest ecosystems in Darien, Panama. Turrialba 21:189196.Google Scholar
GOTSCH, S. G., NADKARNI, N. M., DARBY, A., GLUNK, A., DIX, M., DAVIDSON, K. & DAWSON, T. E. 2015. Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecological Monographs 85:393412.CrossRefGoogle Scholar
GRADSTEIN, S. R., NADKARNI, N. M., KRÖMER, T., HOLZ, I. & NÖSKE, N. 2003. A protocol for rapid and representative sampling of vascular and non-vascular epiphyte diversity of tropical rain forests. Selbyana 24:105111.Google Scholar
HAGER, A. & DOHRENBUSCH, A. 2011. Hydrometeorology and structure of tropical montane cloud forests under contrasting biophysical conditions in north-western Costa Rica. Hydrological Processes 25:392401.Google Scholar
HERTEL, D., HOHLER, L. & RILLIG, M. C. 2011. Mycorrhizal, endophytic and ecomorphological status of tree roots in the canopy of a montane rain forest. Biotropica 43:401404.Google Scholar
HERWITZ, S. 1986. Episodic stemflow inputs of magnesium and potassium to a tropical forest floor during heavy rainfall events. Oecologia 70:423425.Google Scholar
HIETZ, P. & WINKLER, M. 2006. Breeding systems, fruit set, and flowering phenology of epiphytic bromeliads and orchids in a Mexican humid montane forest. Selbyana 27:156164.Google Scholar
HIETZ, P., WANEK, W., WANIA, R. & NADKARNI, N. M. 2002. Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350355.Google Scholar
HOFSTEDE, R., WOLF, J. & BENZING, D. 1993. Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14:3745.Google Scholar
HÖLSCHER, D., KÖHLER, L., VAN DIJK, A. I. & BRUIJNZEEL, L. A. 2004. The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology 292:308322.CrossRefGoogle Scholar
HOLWERDA, F., BRUIJNZEEL, L. A., MUÑOZ-VILLERS, L. E., EQUIHUA, M. & ASBJORNSEN, H. 2010. Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. Journal of Hydrology 384:8496.Google Scholar
HSU, C. C., HORNG, F. W. & KUO, C. M. 2002. Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology 18:659670.Google Scholar
INGRAM, S. & NADKARNI, N. 1993. Composition and distribution of epiphytic organic matter in a neotropical cloud forest, Costa Rica. Biotropica 25:370383.Google Scholar
KNOPS, J., NASH, T., BOUCHER, V. L. & SCHLESINGER, W. 1991. Mineral cycling and epiphytic lichens: implications at the ecosystem level. Lichenologist 23:309321.Google Scholar
KÖHLER, L. 2002. Die Bedeutung der Epiphyten im ökosystemaren Wasser-und Nahrstoffumsatz verschiedener Altersstadien eines Bergregenwaldes in Costa Rica. Berichte des Forschungszentrums, Waldökosysteme Reihe A, Band 181. University of Göttingen, Gottingen, Germany. 134 pp.Google Scholar
KÖHLER, L., TOBÓN, C., FRUMAU, K. & BRUIJNZEEL, L. 2007. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecology 193:171184.CrossRefGoogle Scholar
LAWTON, R., NAIR, U., PIELKES, R. & WELCH, R. 2001. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584587.Google Scholar
LESICA, P. & ANTIBUS, R. 1991. Canopy soils and epiphyte richness. National Geographic Research and Exploration 7:156165.Google Scholar
MARTIN, P. H., SHERMAN, R. E. & FAHEY, T. J. 2004. Forty years of tropical forest recovery from agriculture: structure and floristics of secondary and old growth riparian forests in the Dominican Republic. Biotropica 36:297317.Google Scholar
MAFFIA, B., NADKARNI, N. M. & JANOS, D. P. 1993. Vesicular-arbuscular mycorrhizae of epiphytic and terrestrial Piperaceae under field and greenhouse conditions. Mycorrhiza 4:511.Google Scholar
MATELSON, T. J., NADKARNI, N. M. & LONGINO, J. T. 1993. Survivorship of fallen epiphytes in a neotropical cloud forest, Monteverde, Costa Rica. Ecology 74:265269.Google Scholar
MCCUNE, B. 1993. Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. Bryologist 96:405411.Google Scholar
MULLIGAN, M. 2010. Modeling the tropics-wide extent and distribution of cloud forest and cloud forest loss, with implications for conservation priority. Pp. 1439 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
MURCIA, C. 1997. Evaluation of Andean alder as a catalyst for the recovery of tropical cloud forests in Colombia. Forest Ecology and Management 99:163170.Google Scholar
NADKARNI, N. M. 1981. Canopy roots: convergent evolution in rainforest nutrient cycles. Science 213:10241025.Google Scholar
NADKARNI, N. M. 1984a. Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 24:2430.Google Scholar
NADKARNI, N. M. 1984b. Biomass and mineral capital of epiphytes in an Acer macrophyllum community of a temperate moist coniferous forest, Olympic Peninsula, Washington State. Canadian Journal of Botany 62:22232228.Google Scholar
NADKARNI, N. M. 2000. Colonization of stripped branch surfaces by epiphytes in a lower montane cloud forest, Monteverde, Costa Rica. Biotropica 32:358363.Google Scholar
NADKARNI, N. M. & LONGINO, J. T. 1990. Macroinvertebrate communities in canopy and forest floor organic matter in a montane cloud forest, Costa Rica. Biotropica 22:286289.Google Scholar
NADKARNI, N. M. & MATELSON, T. J. 1989. Bird use of epiphyte resources in neotropical trees. The Condor 91:891907.Google Scholar
NADKARNI, N. M. & MATELSON, T. J. 1991. Dynamics of fine litterfall within the canopy of a tropical cloud forest, Monteverde. Ecology 72:20712082.Google Scholar
NADKARNI, N. M. & MATELSON, T. J. 1992. Biomass and nutrient dynamics of epiphyte litterfall in a neotropical cloud forest, Costa Rica. Biotropica 24:2430.CrossRefGoogle Scholar
NADKARNI, N. & SOLANO, R. 2002. Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia 131:580584.Google Scholar
NADKARNI, N. M. & WHEELWRIGHT, N. T. (eds.). 2000. Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, New York. 573 pp.CrossRefGoogle Scholar
NADKARNI, N., SCHAEFER, D., MATELSON, T. & SOLANO, R. 2002. Comparison of arboreal and terrestrial soil characteristics in a lower montane forest, Monteverde, Costa Rica. Pedobiologia 46:2433.Google Scholar
NADKARNI, N., SCHAEFER, D., MATELSON, T. & SOLANO, R. 2004. Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management 198:223236.Google Scholar
OGBURN, R. M. & EDWARDS, E. J. 2010. The ecological water use strategies of succulent plants. Advances in Botanical Research 55:179225.Google Scholar
PATIÑO, J., GONZÁLEZ-MANCEBO, J. M., FERNÁNDEZ-PALACIOS, J. M., ARÉVALO, J. R. AND BERMÚDEZ, A. 2009. Short-term effects of clear-cutting on the biomass and richness of epiphytic bryophytes in managed subtropical cloud forests. Annals of Forest Science 66:113.Google Scholar
PÓCS, T. 1980. The epiphytic biomass and its effect on the water balance of two rainforest types in the Uluguru Mountains (Tanzania, East Africa). Acta Botanica Academiae Scientiarum Hungaricae 26:143167.Google Scholar
POUNDS, A., FOGDEN, M. P. L. & CAMPBELL, J. 1999. Biological responses to climate change on a tropical mountain. Nature 398:611615.Google Scholar
PYPKER, T. G., UNSWORTH, M. H. & BOND, B. J. 2006. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Canadian Journal of Forest Research 36:819832.Google Scholar
RAINS, K. C., NADKARNI, N. & BLEDSOE, C. 2003. Epiphytic and terrestrial mycorrhizas in a neotropical cloud forest, Costa Rica. Mycorrhiza 13:257264.Google Scholar
REMSEN, J. V. & PARKER, T. A. 1984. Arboreal dead-leaf-searching birds of the Neotropics. The Condor 86:3641.Google Scholar
RITTER, A., REGALADO, C. M. & ASCHAN, G. 2009. Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain). Tree Physiology 29:517528.Google Scholar
SCHIMPER, A. W. 1888. Die epiphytische Vegetation Amerikas. G. Fisher, Jena. 162 pp.Google Scholar
SCOTT, M. G. & HUTCHINSON, T. C. 1987. Effects of a simulated acid rain episode on photosynthesis and recovery in the caribou-forage lichens, Cladina stellaris (Opiz.) Brodo and Cladina rangiferina (L.) Wigg. New Phytologist 107:567575.CrossRefGoogle Scholar
SILLETT, T. S. 1994. Foraging ecology of epiphyte-searching insectivorous birds in Costa Rica. The Condor 96:863877.Google Scholar
SONGWE, N.C., FASEHUN, F.W. & OKALI, D. U. U. 1988. Litterfall and productivity in a tropical rainforest, Southern Bakundu Forest Reserve, Cameroon. Journal of Tropical Ecology 4:2537.Google Scholar
STEWART, G. S., SCHMIDT, L., TURNBULL, M., ERSKINE, P. & JOLY, C. 1995. 15N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition. Plant, Cell & Environment 18:8590.Google Scholar
STRONG, D. 1977. Epiphyte loads, tree falls, and perennial forest disruption: a mechanism for maintaining higher tree species richness in the tropics without animals. Journal of Biogeography 4:215218.Google Scholar
SUGDEN, A. & ROBINS, R. 1979. Aspects of the ecology of vascular epiphytes in Colombian cloud forests, I. The distribution of the epiphytic flora. Biotropica 11:173188.Google Scholar
TANNER, E. V. J. 1980. Studies on the biomass and productivity in a series of montane rain forests in Jamaica. Journal of Ecology 68:573588.Google Scholar
TERBORGH, J. 1986. Keystone plant resources in the tropical forest. Pp. 330344 in Soule, M. E. (ed.). Conservation biology, the science of scarcity and diversity. Sinauer, Sunderland.Google Scholar
TOBÓN, C., KÖHLER, L., FRUMAU, K. F. A., BRUIJNZEEL, L. A., BURKARD, R. & SCHMID, S. 2010. Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage, and evaporation. Pp. 261267 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
VANCE, E. & NADKARNI, N. 1990. Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biology and Biochemistry 22:677684.Google Scholar
VANCE, E. & NADKARNI, N. 1992. Root biomass distribution in a moist tropical montane forest. Plant and Soil 142:3139.CrossRefGoogle Scholar
VARESCHI, V. 1986. Cino breves ensayos ecologicos acerca de la selva virgen de Rancho Grande. Pp. 171187 in Huber, O. (ed.). La selva nublada de Rancho Grande parque nacional “Henri Pittier”. Fondo editorial Acta Cientifica Venezoalana, Seguros Anauco C.A., Caracas.Google Scholar
VENEKLAAS, E. 1990. Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forests, Colombia. Journal of Ecology 78:974992.Google Scholar
VENEKLAAS, E. 1992. Litterfall and nutrient fluxes in two montane tropical rainforests, Colombia. Journal of Tropical Ecology 7:319336.Google Scholar
WAGNER, S., BADER, M. Y. & ZOTZ, G. 2014. Physiological ecology of tropical bryophytes. photosynthesis in bryophytes and early land plants. Advances in Photosynthesis and Respiration 37:269289.CrossRefGoogle Scholar
WEAVER, P. L. 1972. Cloud moisture interception in the Luquillo Mountains of Puerto Rico. Caribbean Journal of Science 12:129144.Google Scholar
WERNER, F. A., HOMEIER, J., OESKER, M. & BOY, J. 2012. Epiphytic biomass of a tropical montane forest varies with topography. Journal of Tropical Ecology 28:2331.CrossRefGoogle Scholar
WILSON, E. O. 1988. Biodiversity. Harvard University Press, Cambridge. 538 pp.Google Scholar
ZOTZ, G. & HIETZ, P. 2001. The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 364:20642078.Google Scholar
ZOTZ, G., BUDEL, B., MEYER, A., ZELLNER, H. & LANGE, O. L. 1997. Water relations and CO2 exchange of tropical bryophytes in a lower montane rain forest in Panama. Botanica Acta 110:917.Google Scholar