Skip to main content
    • Aa
    • Aa

Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas


This new project relies on the capabilities collocated at Los Alamos in the Trident laser facility of long-pulse laser drive, for laser-plasma formation, and high-intensity short-pulse laser drive, for relativistic laser-matter interaction experiments. Specifically, we are working to understand quantitatively the physics that underlie the generation of laser-driven MeV/nucleon ion beams, in order to extend these capabilities over a range of ion species, to optimize beam generation, and to control those beams. Furthermore, we intend to study the interaction of these novel laser-driven ion beams with dense plasmas, which are relevant to important topics such as the fast-ignition method of inertial confinement fusion (ICF), weapons physics, and planetary physics. We are interested in irradiating metallic foils with the Trident short-pulse laser to generate medium to heavy ion beams (Z = 20–45) with high efficiency. At present, target-surface impurities seem to be the main obstacle to reliable and efficient acceleration of metallic ions in the foil substrate. In order to quantify the problem, measurements of surface impurities on typical metallic-foil laser targets were made. To eliminate these impurities, we resorted to novel target-treatment techniques such as Joule-heating and laser-ablation, using a long-pulse laser intensity of ∼ 1010 W/cm2. Our progress on this promising effort is presented in this paper, along with a summary of the overall project.

Corresponding author
Address correspondence and reprint requests to: Juan C. Fernandez, Los Alamos National Laboratory, MS E526, Group P-24, Los Alamos, NM 87545. E-mail:
Hide All
This paper was presented at the 28th ECLIM conference in Rome, Italy.
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Chirila, C.C., Joachain, C.J., Kylstra, N.J. & Potvliege, R.M. (2004). Interaction of ultra intense laser pulses with relativistic ions. Laser Part. Beams22, 203206.

Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pèpin, H. & Renard-Legalloudec, N. (2004). Ultralow emittance, multi-mev proton beams from a laser virtual-cathode plasmaaccelerator. Phys. Rev. Lett. 92, 204801 (14).

Fuchs, J. (2004). Phys. Rev. Lett. (submitted).

Gericke, D.O. & Schlanges, M. (2003). Stopping power for highly charged beam ions in dense plasmas. Phys. Rev. E67, 037401.

Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas7, 20762082.

Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002 (14).

Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams22, 1924.

Renner, O., Uschmann, I. & Forster, E. (2004). Diagnostic potential of advanced X-ray spectroscopy for investigation of hot dense plasmas. Laser Part. Beams22, 2528.

Shorokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short laser pulse. Laser Part. Beams22, 175181.

Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett.85, 29452948.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *