Skip to main content

Energy dissipation of ion beam in two-component plasma in the presence of laser irradiation

  • Zhang-Hu Hu (a1), Yuan-Hong Song (a1), Z.L. Mišković (a2) and You-Nian Wang (a1)

We use a two-dimensional particle-in-cell simulation to investigate the dynamic polarization and stopping power for an ion beam propagating through a two-component plasma, which is simultaneously irradiated by a strong laser pulse. Compared to the laser-free case, we observe a reduction in the instantaneous stopping power that initially follows the shape of the laser pulse and becomes particularly large as the laser frequency approaches the plasma electron frequency. We attribute this large reduction in the ion stopping power to an increase in plasma temperature due to the energy absorbed in the plasma from the laser pulse through the process of wave heating. In addition, dynamic polarization of the plasma by the ion is found to be strongly modulated by the laser field.

Corresponding author
Address correspondence and reprint requests to: You-Nian Wang, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China116024. E-mail:
Hide All
Arista N.R., Galvao R.O.M. & Miranda L.C.M. (1989). Laser-field effects on the interaction of charged particles with a degenerate electron gas. Phys. Rev. A 40, 38083816.
Arista N.R., Galvao R.O.M. & Miranda L.C.M. (1990). Influence of a strong laser field on the stopping power for charged test particles in nondegenerate plasmas. J. Phys. Soc. Jpn. 59, 554–552.
Deutsch C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. (Paris) 11, 1111.
Deutsch C., Maynard G., Bimbot R., Gardes D., Dellanegra S., Dumail M., Kubica B., Richard A., River M.F., Servagean A., Fleurier C., Sanba A., Hoffmann D.H.H., Weyrich K. & Wahl H. (1989). Ion beam-plasma interaction: A standard model approach. Nucl. Instrum. Methods Phys. Res A 278, 3843.
Frank A., Grande P.L., Harres K., Heßling T., Hoffmann D.H.H., Knobloch-Maas R., Kuznetsov P.G., Nürnberg F., Pelka A., Schaumann G., Schiwietz G., Schökel A., Schollmeier M., Schumacher D., Schütrumpf J., Vatulin V.V., Vinokurov O.A. & Roth M. (2010). Energy loss of argon in a laser-generated carbon plasma. Phys. Rev. E 81, 026401.
Hockney R.W. & Eastwood J.W. (1981). Computer Simulation Using Particles (Rao, S. and Eichberg, M.). New York: McGraw-Hill.
Hoffmann D.H.H. (2008). Intense laser and particle beams interaction physics toward inertial fusion. Laser Part. Beams 26, 295296.
Hoffmann D.H.H., Tahir N.A., Udreal S., Rosmej O., Meister C.V., Varentsov D., Roth M., Schaumann G., Frank A., Blažević A., Ling J., Hug A., Menzel J., Hessling Th., Harres K., Günther M., El-Moussatil S., Schumacher D. & Imran M. (2010). High Energy Density Physics with Heavy Ion Beams and related Interaction Phenomena. Contrib. Plasma Phys. 50, 715.
Hu Z.-H., Song Y.-H. & Wang Y.-N. (2009). Dynamic polarization and energy dissipation for charged particles moving in magnetized two-component plasmas. Phys. Rev. E 79, 016405.
Hu Z.-H., Song Y.-H. & Wang Y.-N. (2010). Wake effect and stopping power for a charged ion moving in magnetized two-component plasmas: Two-dimensional particle-in-cell simulation. Phys. Rev. E 82, 026404.
Kruer W. L., Kaw P. K., Dawson J. M. & Oberman C. (1970). Anomalous High-Frequency Resistivity and Heating of a Plasma. Phys. Rev. Lett. 24, 987990.
Kruer W. L. (1981). The Physics of Laser Plasma Interaction (Pines, D.). New York: Addison–Wesley.
Nanbu K. (1997). Theory of cumulative small-angle collisions in plasmas. Phys. Rev. E 55, 46424652.
Nellis W.J. (2006). Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69, 14791580.
Nersisyan H.B. & Akopyan E.A. (1999). Stopping and acceleration effect of protons in a plasma in the presence of an intense radiation field. Phys. Lett. A 258, 323328.
Nettelmann N., Holst B., Kietzmann A., French M., Redmer R. & Blaschke D. (2008). Ab initio equation of state data for hydrogen, helium, and water and the internal structure of jupiter. Astrophys. Jour. 683, 12171228.
Oguri Y., Tsubuku K., Sakumi A., Shibata K., Sato R., Nishigori K., Hasegawa J. & Ogawa M. (2000). Heavy ion stripping by a highly-ionized laser plasma. Nucl. Instrum. Methods Phys. Res. B 161-163, 155158.
Roth M., Stöckll C., Suß W., Iwase O., Gericke D.O., Bock R., Hoffmann D.H.H., Geissel M. & Seelig W. (2000). Energy loss of heavy ions in laser-produced plasmas. EPL 50, 2834.
Roth M., Cowan T.E., Key M.H., Hatchett S.P., Brown C., Fountain W., Johnson J., Pennington D.M., Snavely R.A., Wilks S.C., Yasuike K., Ruhl H., Pegoraro F., Bulanov S.V., Campbell E.M., Perry M.D. & Powell H. (2001). Fast Ignition by Intense Laser-Accelerated Proton Beams. Phys. Rev. Lett. 86, 436439.
Stöckl C., Frankenheim O.B., Roth M., Suß W., Wetzler H., Seelig W., Kulish M., Dornik M., Laux W., Spiller P., Stetter M., Stöwe S., Jacoby J. & Hoffmann D.H.H. (1996). Interaction of heavy ion beams with dense plasmas. Laser Part. Beams 14, 561574.
Tahir N.A., Deutsch C., Fortov V.E., Gryaznov V., Hoffmann D.H.H., Kulish M., Lomonosov I.V., Mintsev V., Ni P., Nikolaev D., Piriz A.R., Shilkin N., Spiller P., Shutov A., Temporal M., Ternovoi V., Udrea S. & Varentsov D. (2005). Proposal for the Study of Thermophysical Properties of High-Energy-Density Matter Using Current and Future Heavy-Ion Accelerator Facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 84 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.