Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 131
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Astbury, S Bedacht, S Brummitt, P Carroll, D Clarke, R Crisp, S Hernandez-Gomez, C Holligan, P Hook, S Merchan, J S Neely, D Ortner, A Rathbone, D Rice, P Schaumann, G Scott, G Spindloe, C Spurdle, S Tebartz, A Tomlinson, S Wagner, F Borghesi, M Roth, M and Tolley, M K 2016. In-situ formation of solidified hydrogen thin-membrane targets using a pulse tube cryocooler. Journal of Physics: Conference Series, Vol. 713, p. 012006.

    Dover, N P Palmer, C A J Streeter, M J V Ahmed, H Albertazzi, B Borghesi, M Carroll, D C Fuchs, J Heathcote, R Hilz, P Kakolee, K F Kar, S Kodama, R Kon, A MacLellan, D A McKenna, P Nagel, S R Neely, D Notley, M M Nakatsutsumi, M Prasad, R Scott, G Tampo, M Zepf, M Schreiber, J and Najmudin, Z 2016. Buffered high charge spectrally-peaked proton beams in the relativistic-transparency regime. New Journal of Physics, Vol. 18, Issue. 1, p. 013038.

    Gu, Y. J. Kong, Q. Kawata, S. Izumiyama, T. Nagashima, T. Takano, M. Li, X. F. Yu, Q. Barada, D. Ma, Y. Y. and Wang, P. X. 2016. Ion Acceleration by Ultra-intense Laser Pulse Interacting with Double-layer Near-critical Density Plasma. Journal of Physics: Conference Series, Vol. 688, p. 012021.

    Kawata, S. Izumiyama, T. Sato, D. Nagashima, T. Takano, M. Barada, D. Gu, Y. J. Ma, Y. Y. Kong, Q. Wang, P. X and Wang, W. M. 2016. Ion beam control in laser plasma interaction. Journal of Physics: Conference Series, Vol. 688, p. 012045.

    King, M. Gray, R.J. Powell, H.W. MacLellan, D.A. Gonzalez-Izquierdo, B. Stockhausen, L.C. Hicks, G.S. Dover, N.P. Rusby, D.R. Carroll, D.C. Padda, H. Torres, R. Kar, S. Clarke, R.J. Musgrave, I.O. Najmudin, Z. Borghesi, M. Neely, D. and McKenna, P. 2016. Ion acceleration and plasma jet formation in ultra-thin foils undergoing expansion and relativistic transparency. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 829, p. 163.

    Padda, H. King, M. Gray, R. J. Powell, H. W. Gonzalez-Izquierdo, B. Stockhausen, L. C. Wilson, R. Carroll, D. C. Dance, R. J. MacLellan, D. A. Yuan, X. H. Butler, N. M. H. Capdessus, R. Borghesi, M. Neely, D. and McKenna, P. 2016. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions. Physics of Plasmas, Vol. 23, Issue. 6, p. 063116.

    Petrov, G. M. McGuffey, C. Thomas, A. G. R. Krushelnick, K. and Beg, F. N. 2016. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes. Physics of Plasmas, Vol. 23, Issue. 6, p. 063108.

    Roth, M. Jung, D. Falk, K. Guler, N. Deppert, O. Devlin, M. Favalli, A. Fernandez, J. Gautier, D. C. Geissel, M. Haight, R. Hamilton, C. E. Hegelich, B. M. Johnson, R. P. Kleinschmidt, A. Merrill, F. Schaumann, G. Schoenberg, K. Schollmeier, M. Shimada, T. Taddeucci, T. Tybo, J. L. Wagner, F. Wender, S. A. Wilde, C. H. and Wurden, G. A. 2016. A bright neutron source driven by relativistic transparency of solids. Journal of Physics: Conference Series, Vol. 688, p. 012094.

    Stockhausen, Luca C. Torres, Ricardo and Conejero Jarque, Enrique 2016. Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 830, p. 550.

    Tebartz, A Bedacht, S Schaumann, G and Roth, M 2016. Fabrication and characterization of thin polymer targets for laser-driven ion acceleration. Journal of Physics: Conference Series, Vol. 713, p. 012005.

    Tudisco, S. Altana, C. Lanzalone, G. Muoio, A. Cirrone, G. A. P. Mascali, D. Schillaci, F. Brandi, F. Cristoforetti, G. Ferrara, P. Fulgentini, L. Koester, P. Labate, L. Palla, D. and Gizzi, L. A. 2016. Investigation on target normal sheath acceleration through measurements of ions energy distribution. Review of Scientific Instruments, Vol. 87, Issue. 2, p. 02A909.

    Bin, J. H. Ma, W. J. Wang, H. Y. Streeter, M. J. V. Kreuzer, C. Kiefer, D. Yeung, M. Cousens, S. Foster, P. S. Dromey, B. Yan, X. Q. Ramis, R. Meyer-ter-Vehn, J. Zepf, M. and Schreiber, J. 2015. Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas. Physical Review Letters, Vol. 115, Issue. 6,

    Gales, S. 2015. Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014).

    Krygier, A. G. Morrison, J. T. Kar, S. Ahmed, H. Alejo, A. Clarke, R. Fuchs, J. Green, A. Jung, D. Kleinschmidt, A. Najmudin, Z. Nakamura, H. Norreys, P. Notley, M. Oliver, M. Roth, M. Vassura, L. Zepf, M. Borghesi, M. and Freeman, R. R. 2015. Selective deuterium ion acceleration using the Vulcan petawatt laser. Physics of Plasmas, Vol. 22, Issue. 5, p. 053102.

    Lin, H. Liu, C. P. Wang, C. and Shen, B. F. 2015. Miniaturization of solid-state accelerator by compact low-energy-loss electron reflecting mirror. EPL (Europhysics Letters), Vol. 109, Issue. 5, p. 54004.

    Powell, H W King, M Gray, R J MacLellan, D A Gonzalez-Izquierdo, B Stockhausen, L C Hicks, G Dover, N P Rusby, D R Carroll, D C Padda, H Torres, R Kar, S Clarke, R J Musgrave, I O Najmudin, Z Borghesi, M Neely, D and McKenna, P 2015. Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency. New Journal of Physics, Vol. 17, Issue. 10, p. 103033.

    Scott, G G Bagnoud, V Brabetz, C Clarke, R J Green, J S Heathcote, R I Powell, H W Zielbauer, B Arber, T D McKenna, P and Neely, D 2015. Optimization of plasma mirror reflectivity and optical quality using double laser pulses. New Journal of Physics, Vol. 17, Issue. 3, p. 033027.

    Thema, F.T. Beukes, P. Ngom, B.D. Manikandan, E. and Maaza, M. 2015. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration. Journal of Alloys and Compounds, Vol. 648, p. 326.

    Wagner, F. Bedacht, S. Bagnoud, V. Deppert, O. Geschwind, S. Jaeger, R. Ortner, A. Tebartz, A. Zielbauer, B. Hoffmann, D. H. H. and Roth, M. 2015. Simultaneous observation of angularly separated laser-driven proton beams accelerated via two different mechanisms. Physics of Plasmas, Vol. 22, Issue. 6, p. 063110.

    Willis, Christopher Poole, Patrick L. Akli, Kramer U. Schumacher, Douglass W. and Freeman, Richard R. 2015. A confocal microscope position sensor for micron-scale target alignment in ultra-intense laser-matter experiments. Review of Scientific Instruments, Vol. 86, Issue. 5, p. 053303.


GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner

  • L. YIN (a1), B. J. ALBRIGHT (a1), B. M. HEGELICH (a1) and J. C. FERNÁNDEZ (a1)
  • DOI:
  • Published online: 01 June 2006

A new laser-driven ion acceleration mechanism has been identified using particle-in-cell (PIC) simulations. This mechanism allows ion acceleration to GeV energies at vastly reduced laser intensities compared with earlier acceleration schemes. The new mechanism, dubbed “Laser Break-out Afterburner” (BOA), enables the acceleration of carbon ions to greater than 2 GeV energy at a laser intensity of only 1021 W/cm2, an intensity that has been realized in existing laser systems. Other techniques for achieving these energies in the literature rely upon intensities of 1024 W/cm2 or above, i.e., 2–3 orders of magnitude higher than any laser intensity that has been demonstrated to date. Also, the BOA mechanism attains higher energy and efficiency than target normal sheath acceleration (TNSA), where the scaling laws predict carbon energies of 50 MeV/u for identical laser conditions. In the early stages of the BOA, the carbon ions accelerate as a quasi-monoenergetic bunch with median energy higher than that realized recently experimentally.

Corresponding author
Address correspondence and reprint requests to: B. M. Hegelich, Los Alamos National Laboratory, Los Alamos, New Mexico 87545. E-mail:
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *