Skip to main content
×
Home

Two-dimensional quantum hydrodynamic model for the heating of a solid target using a Gaussian cluster

  • Ya Zhang (a1), Yuan-Hong Song (a1), Yong-Tao Zhao (a2) and You-Nian Wang (a1)
Abstract
Abstract

This paper presents numerical simulations to study the heating of a two-dimensional (2D) solid target under an ion cluster interaction. 2D quantum hydrodynamic (QHD) model is employed for the heating of solid target to warm dense matter on a picosecond time scale. A Gaussian cluster is used to uniformly heat the solid target to a temperature of several eV. The density and temperature of the target are calculated by a full self-consistent treatment of the QHD formalisms and the Poisson's equation. The technique described in this paper provides a method for creating uniformly heated strongly coupled plasma states.

Copyright
Corresponding author
Address correspondence and reprint requests to: You-Nian Wang, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China. E-mail: ynwang@dlut.edu.cn.
References
Hide All
Boris J.P., Landsberg A.M., Oran E.S. & Gardner J.H. (1993). LCPFCT–flux-corrected transport algorithm for solving generalized continuity equations. In NRL Memorandom Report 6410. Washington, DC: Naval Research Laboratory, 20375–5320.
Brambrink E., Roth M., Blazevic A. & Schlegel T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.
Chen Z., Cockburn B., Gardner C.L. & Jerome J.W. (1995). Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J. Comput. Phys. 117, 274280.
Deutsch C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. (Paris) 11, 1111.
Deutsch C., Maynard G., Bimbot R., Gardes D., Dellanegra S., Dumail M., Kubica B., Richard A., River M.F., Sernagean A., Fleurier C., Sanba A., Hoffmann D.H.H., Weyrich K. & Wahl H. (1989). Ion beam-plasma interaction: A standard model approach. Nucl. Instrum. Methods Phys. Res. A 278, 3843.
Deutsch C. (1992). Ion cluster interaction with cold targets for ICF: Fragmentation and stopping. Laser Part. Beams 10, 217226.
Haas F., Manfredi G. & Feix M. (2000). Multistream model for quantum plasmas. Phys. Rev. E 62, 2763.
Hoffmann D.H.H. (2008). Intense laser and particle beams interaction physics toward inertial fusion. Laser Part. Beams 26, 295296.
Hoffmann D.H.H., Fortov V.E., Kuster M., Mintsev V., Sharkov B.Y., Tahir N.A., Udrea S., Varentsov D. & Weyrich K. (2009). High energy density physics generated by intense heavy ion beams. Astrophys Space Sci. 322, 167177.
Hoffmann D.H.H., Tahir N.A., Udreal S., Rosmej O., Meister C.V., Varentsov D., Roth M., Schaumann G., Frank A., Blažević A., Ling J., Hug A., Menzel J., Hessling TH., Harres K., Günther M., El-Moussatil S., Schumacher D. & Imran M. (2010). High energy density physics with heavy ion beams and related interaction phenomena. Contrib. Plasma Phys. 50, 715.
Hora H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.
Hu Z.-H., Song Y.-H., Mišković Z.L. & Wang Y.-N. (2011). Energy dissipation of ion beam in two-component plasma in the presence of laser irradiation. Laser Part. Beams 29, 299304.
Hu Z.-H., Song Y.-H. & Wang Y.-N. (2012). Time evolution and energy deposition for ion clusters injected into magnetized two-component plasmas. Phys. Rev. E 85, 016402.
Manfredi G. & Haas F. (2001). Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316.
More R.M., Warren K.H., Young D.A. & Zimmerman G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.
Nellis W.J. (2006). Dynamic compression of materials: Metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69, 14791580.
Nettelmann N., Holst B., Kietzmann A., French M., Redmer R. & Blaschke D. (2008). Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. Astrophysic. J. 683, 12171228.
Patel P.K., Mackinnon A.J., Key M.H., Cowan T.E., Foord M.E., Allen M., Price D.F. & Ruhl H. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.
Stöckl C., Frankenheim O.B., Roth M., Suß W., Wetzler H., Seelig W., Kulish M., Dornik M., Laux W., Spiller P., Stetter M., Stöwe S., Jacoby J. & Hoffmann D.H.H. (1996). Interaction of heavy ion beams with dense plasmas. Laser Part. Beams 14, 561574.
Tahir N.A., Deutsch C., Fortov V.E., Gryaznov V., Hoffmann D.H.H., Kulish M., Lomonosov I.V., Mintsev V., Ni P., Nikolaev D., Piriz A.R., Shilkin N., Spiller P., Shutov A., Temporal M., Ternovoi V., Udrea S. & Varentsov D. (2005). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.
Tahir N.A., Kim V., Matvechev A., Ostrik A., Lomonosov I.V., Piriz A.R., Cela J.J.L. & Hoffmann D.H.H. (2007). Numerical modeling of heavy ion induced stress waves in solid targets. Laser Part. Beams 25, 523540.
Tahir N.A., Schmidt R., Shutov A., Lomonosov I.V., Piriz A.R., Hoffmann D.H.H., Deutsch C. & Fortov V.E. (2009a). Large hadron collider at CERN: Beams generating high-energy-density matter. Phys. Rev. E 79, 046410.
Tahir N.A., Spiller P., Shutov A., Lomonosov I.V., Piriz A.R., Redmer R., Hoffmann D.H.H., Fortov V.E., Deutsch C. & Bock R.M. (2009b). Proposed high energy density physics research using intense particle beams at FAIR: The HEDgeHOB collaboration. IEEE Trans. Plasma Sci. 37, 12671275.
Tahir N.A., Shutov A., Piriz A.R., Lomonosov I.V., Deutsch C., Spiller P. & Stöhlker TH. (2011). Application of intense heavy ion beams to study high energy density physics. Plasma Phys. Control. Fusion 53, 124004.
Zhang Y., Song Y.-H. & Wang Y.-N. (2011a). Stopping power for a charged particle moving through three-dimensional nonideal finite-temperature electron gases. Phys. Plasmas 18, 072701.
Zhang Y., Song Y.-H. & Wang Y.-N. (2011b). Nonlinear wake potential and stopping power for charged particles interacting with a one-dimensional electron gas. Phys. Plasmas 18, 112705.
Zhao Y., Xu H., Zhao H., Xia J., Jin G., Ma X., Liu Y., Yang Z., Zhang P., Wang Y., Li D., Zhao H., Zhan W., Xu Z., Zhao D., Li F. & Chen X. (2009). An outlook of heavy ion driven plasma research at IMP-Lanzhou. Nucl. Instrum. Meth. Phys. Res. B 267, 163166.
Zhao X. & Shin Y.C. (2012). A two-dimensional comprehensive hydrodynamic model for femtosecond laser pulse interaction with metals. J. Phys. D: Appl. Phys. 45, 105201.
Zwicknagel G., Toepffer C. & Reinhard P.G. (1999). Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117208.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 69 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th November 2017. This data will be updated every 24 hours.