Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 45
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Holmlid, Leif 2015. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium. AIP Advances, Vol. 5, Issue. 8, p. 087129.


    Holmlid, Leif 2015. MeV particles in a decay chain process from laser-induced processes in ultra-dense deuterium D(0). International Journal of Modern Physics E, Vol. 24, Issue. 04, p. 1550026.


    Holmlid, Leif 2014. Ultra-Dense Hydrogen H(−1) as the Cause of Instabilities in Laser Compression-Based Nuclear Fusion. Journal of Fusion Energy, Vol. 33, Issue. 4, p. 348.


    Olofson, Frans and Holmlid, Leif 2014. Electron-positron pair production observed from laser-induced processes in ultra-dense deuterium D(-1). Laser and Particle Beams, Vol. 32, Issue. 04, p. 537.


    Olofson, Frans and Holmlid, Leif 2014. Time-of-flight of He ions from laser-induced processes in ultra-dense deuterium D(0). International Journal of Mass Spectrometry, Vol. 374, p. 33.


    Olofson, Frans and Holmlid, Leif 2014. Intense ionizing radiation from laser-induced processes in ultra-dense deuterium D(-1). International Journal of Modern Physics E, Vol. 23, Issue. 09, p. 1450050.


    Prelas, M.A. Hora, H. and Miley, G.H. 2014. Nucleus <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>Z</mml:mi><mml:mo>=</mml:mo><mml:mn>126</mml:mn></mml:math> with magic neutron number <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>N</mml:mi><mml:mo>=</mml:mo><mml:mn>184</mml:mn></mml:math> may be related to the measured Maruhn–Greiner maximum at <mml:math altimg="si3.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>A</mml:mi><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn><mml:mo>=</mml:mo><mml:mn>155</mml:mn></mml:math> from compound nuclei at low energy nuclear reactions. Physics Letters A, Vol. 378, Issue. 34, p. 2467.


    Holmlid, Leif 2013. Direct observation of particles with energy >10 MeV/u from laser-induced processes with energy gain in ultra-dense deuterium. Laser and Particle Beams, Vol. 31, Issue. 04, p. 715.


    Holmlid, Leif 2013. Laser-induced fusion in ultra-dense deuterium D(−1): Optimizing MeV particle emission by carrier material selection. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 296, p. 66.


    HOLMLID, LEIF 2013. TWO-COLLECTOR TIMING OF 3–14 MeV/u PARTICLES FROM LASER-INDUCED PROCESSES IN ULTRA-DENSE DEUTERIUM. International Journal of Modern Physics E, Vol. 22, Issue. 12, p. 1350089.


    Miley, George H. and Yang, Xiaoling 2013. 2013 IEEE 25th Symposium on Fusion Engineering (SOFE). p. 1.

    Phillips, R. E. and Ordonez, C. A. 2013. Accelerator-based neutron source using a cold deuterium target with degenerate electrons. AIP Advances, Vol. 3, Issue. 7, p. 072115.


    Andersson, Patrik U and Holmlid, Leif 2012. Fast atoms and negative chain-cluster fragments from laser-induced Coulomb explosions in a super-fluid film of ultra-dense deuterium D(−1). Physica Scripta, Vol. 86, Issue. 4, p. 045601.


    Andersson, Patrik U. and Holmlid, Leif 2012. Cluster ions DN+ ejected from dense and ultra-dense deuterium by Coulomb explosions: Fragment rotation and D+ backscattering from ultra-dense clusters in the surface phase. International Journal of Mass Spectrometry, Vol. 310, p. 32.


    Andersson, Patrik U. and Holmlid, Leif 2012. Fusion Generated Fast Particles by Laser Impact on Ultra-Dense Deuterium: Rapid Variation with Laser Intensity. Journal of Fusion Energy, Vol. 31, Issue. 3, p. 249.


    Holmlid, L. 2012. MeV particles from laser-initiated processes in ultra-dense deuterium D(−1). The European Physical Journal A, Vol. 48, Issue. 2,


    Holmlid, Leif 2012. Experimental Studies and Observations of Clusters of Rydberg Matter and Its Extreme Forms. Journal of Cluster Science, Vol. 23, Issue. 1, p. 5.


    Holmlid, Leif 2012. Deuterium Clusters D N and Mixed K–D and D–H Clusters of Rydberg Matter: High Temperatures and Strong Coupling to Ultra-Dense Deuterium. Journal of Cluster Science, Vol. 23, Issue. 1, p. 95.


    Hora, H. Sadighi-Bonabi, R. Yazdani, E. Afarideh, H. Nafari, F. and Ghorannevis, M. 2012. Effect of quantum correction on the acceleration and delayed heating of plasma blocks. Physical Review E, Vol. 85, Issue. 3,


    Miley, George Yang, Xiaoling Ziehm, Erik and Hora, Heinz 2012. 10th International Energy Conversion Engineering Conference.

    ×

Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets

  • L. Holmlid (a1), H. Hora (a2), G. Miley (a3) and X. Yang (a3)
  • DOI: http://dx.doi.org/10.1017/S0263034609990267
  • Published online: 01 August 2009
Abstract
Abstract

Clusters of condensed deuterium of densities up to 1029 cm−3 in pores in solid oxide crystals were confirmed from time-of-flight mass spectrometry measurements. Based on these facts, a schematic outline and possible conclusions of expectable generalizations are presented, which may lead to a simplification of laser driven fusion energy including new techniques for preparation of targets for application in experiments of the NIF type, but also for modified fast igniter experiments using proton or electron beams or side-on ignition of low compressed solid fusion fuel.

Copyright
Corresponding author
Address correspondence and reprint requests to: Heinrich Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: h.hora@unsw.edu.au
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P.A. Amendt , Robey, F. Harry , H.-S Park , R.E. Tipton , R.E. Turner , J.L. Milovich , N. Bono , H.L. Hibbard , R. Wallace & V.Y. Glebov (2005). Hohlraum-driven ignition-like double-shell implosions on the omega laser facility. Phys. Rev. Lett. 94, 065004/1-4.

S. Badiei & L. Holmlid (2006). Experimental studies of fast fragments of H Rydberg matter. J. Phys. B 39, 41914212.

S. Badiei , L. Andersson & L. Holmlid (2009). High-energy Coulomb explosion in ultra-high dense deuterium: Time-of-flight mass spectrometry with variable energy and flight length. International J. Mass Spectr. 282, 7076.

B.W. Boreham , D.S. Newman , D.S. Höpfl & H. Hora (1995). Depressed photoemission from Görlich cathodes at high laser light intensities. J. Appl. Phys. 78, 58485850.

S.O. Dean (2008). The rational for and expanding inertial fusion energy program. J. Fusion Energy 27, 149153.

H.J. Goldsmid , H. Hora & G.L. Paul (1984). Anomalous heat conduction of ion-implanted amorphous layers in silicon crystals using a laser-probe technique. Phys. Stat. Sol. (a) 81, K127K130.

D.H.H. Hoffmann , A. Blasevic , P. Ni , P. Rosmej , M. Roth , N.A.A. Tahir , A. Tauschwitz , S. Udrea , D. Vanentsov , K. Weyrich & Y. Maron (2005). Present and future perspectives for high energy density physics with intensive heavy ion and laser beams Laser Part. Beams, 23, 4754.

H. Hora (1969). Nonlinear confining and deconfining forces associated with interaction of laser radiation with plasma. Phys. Fluids 12, 182188.

H. Hora (1983). Stresses in silicon crystals from ion-implanted amorphous regions Appl. Phys. A 32, 15.

H. Hora (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 27, 207222.

H. Hora , J. Badziak M.N. Read , Yu-Tong Li , Tian-Jiao Liang , Sheng Zheng-Ming Liu Hong , Jie Zhang , F. Osman , G.H. Miley , Weiyan Zhang , Xianto He , Hanscheng Peng , S. Glowacz , S. Jablonski , J. Wolowski , Z. Skladanowski , K. Jungwirth , K. Rohlena & J. Ullschmied (2007). Fast ignition by laser driven beams of very high intensity. Phys. Plasmas 14, 072701, 1–7.

H. Hora , J. Badziak , F. Boody , R. Höpfl , K. Jungwirth , B. Kralikova , J. Krasa , L. Laska , P. Parys , P. Perina , K. Pfeifer & J. Rohlena (2002). Effects of picosecond and ns laser pulses for giant ion source. Optics Communications 207 333338.

H. Hora & G.B. Kabiersch (1968). Combined infrared photoemission from CsSb. Phys. Status Solidi 27, 593600.

H. Hora , R. Kantlehner & N. Riehl (1966). Intensity hysteresis of the photoemission from multialkali cathodes at 77K. Zeitschrift f. Physik 190, 286294.

H. Hora & R. Kantlehner (1969). Thermosensitive Discontinuities and hysteresis of the photoemission of alkali antimonide cathodes at high light intensities. Phys. Status Solidi 33, 669681.

A. Lipson , B.J. Heuser , C. Castanov , G. Miley , B. Lyakov & A. Mitin (2005). Transport and magnetic anomalies below 70 K in a hydrogen cycled Pd foil with a thermally grown oxide. Phys. Rev. B 72, 212507/1-6.

A.M. Malvezzi , H. Kurz & N. Bloembergen (1985). Nonlinear photoemission from picosecond irradiatied silicon. Appl. Phys. A 36, 143150.

G.H. Miley , H. Hora , F. Osman , P. Evans & P. Toups (2005). Single event laser fusion using ns.MJ laser pulses. Laser Part. Beams 23, 453460.

P. Mulser , M. Kanapathipillai & D.H.H. Hoffmann (2005). Two very efficient nonlinear laser absorption mechanisms in clusters. Phys. Rev. Lett. 95, 103401.

M. Roth , E. Brambrink , B. Audebert , A. Blazevic , R. Clarke , Cobble, H. Ruhl , T. Schlegel & J. Schreiber (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: