Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T17:30:58.168Z Has data issue: false hasContentIssue false

Weibull-type speckle distributions as a result of saturation in stimulated scattering processes

Published online by Cambridge University Press:  27 July 2015

S. Hüller*
Affiliation:
Centre de Physique Théorique, CNRS, Ecole Polytechnique, Palaiseau Cedex, France
A. Porzio
Affiliation:
Centre de Physique Théorique, CNRS, Ecole Polytechnique, Palaiseau Cedex, France LAGA, Institut Galilée, Université Paris 13, CNRS, Villetaneuse, France
*
Address correspondence and reprint requests to: S. Hüller, Centre de Physique Théorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France. E-mail: hueller@cpht.polytechnique.fr

Abstract

During the propagation of an optically smoothed laser beam through a warm plasma the speckle field pattern and the corresponding speckle intensity distribution are modified in time and along the laser propagation direction. It is shown here that the laser–plasma interaction can change the character of speckle statistics from an initially exponential-type limit law to a Weibull-type law. The Weibull distribution is characterized by a power-law-type behavior in a limited interval of the random variable, which is, in the present case, the speckle intensity. The properties of the speckle distributions are studied using methods of extremal and order statistics. The scattering instability process (here stimulated Brillouin forward scattering) causing the change in speckle statistics has an onset behavior associated with a “critical gain” value, as pointed out in work by Rose and DuBois (1993b). The saturation of the instability process as a function of intensity explains the limited interval of the Weibull-type speckle distribution. The differences in the type of the speckle statistics are analyzed by using “excess over threshold” methods relying on the generalized Pareto distribution, which clearly brings to evidence the transition from an exponential type distribution to the Weibull-type distribution as a function of the instability gain value, that is, from the regime below critical gain to values above the critical gain.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balkema, A.A. & De Haan, L. (1974). Residual life time at great age. Ann. Probab. 2, 792804.CrossRefGoogle Scholar
Barthelemy, P., Bertolotti, J. & Wiersma, D.S. (2008). A Lévy flight for light. Nature 453, 495.CrossRefGoogle ScholarPubMed
Berger, R.L., Lasinski, B.F., Kaiser, T.B., Williams, E.A., Langdon, A.B. & Cohen, B.I. (1993). Theory and three dimensional simulation of light filamentation in laser produced plasma. Phys. Fluids B 5, 2243.CrossRefGoogle Scholar
Ceccotti, T., Bastiani, , Giulietti, A., Biancalana, V., Chessa, P., Giulietti, D. & Danson, C. (1995). A study of random phased laser spots. Laser Part. Beams 13, 469480.CrossRefGoogle Scholar
Depierreux, S., Labaune, C., Michel, D. T., Stenz, C., Nicolai, P., Grech, M., Riazuelo, G., Weber, S., Riconda, C., Tikhonchuk, V. T., Loiseau, P., Borisenko, N. G., Nazarov, W., Hüller, S., Pesme, D., Casanova, M., Limpouch, J., Meyer, C., Di-Nicola, P., Wrobel, R., Alozy, E., Romary, P., Thiell, G., Soullié, G., Reverdin, C. & Villette, B. (2009). Laser smoothing and imprint reduction with a foam layer in the multi-kilojoule regime. Phys. Rev. Lett. 102, 195005.CrossRefGoogle Scholar
Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997). Modelling Extremal Events. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Fisher, R.A. & Tippett, L.H.C. (1928). Limiting forms of the frequency distribution of the largest or smallest number of a sample. Proc. Camb. Philos. Soc. 24, 180190.CrossRefGoogle Scholar
Garnier, J. (1999). Statistics of the hot spots of smoothed beams produced by random phase plates revisited. Phys. Plasmas 6, 1601.CrossRefGoogle Scholar
Gnedenko, B.V. & Kolmogorov, A.N. (1954). Limit Distributions f or Sums of Independent Random Variables, pp. 264273. Cambridge: Addison-Wesley.Google Scholar
Grech, M., Riazuelo, G., Pesme, D., Weber, S. & Tikhonchuk, V.T. (2009). Coherent forward stimulated-Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray. Phys. Rev. Lett. 102, 155001.CrossRefGoogle Scholar
Grech, M., Tikhonchuk, V.T., Riazuelo, G. & Weber, S. (2006). Plasma induced laser beam smoothing below the filamentation threshold. Phys. Plasmas 13, 093104.CrossRefGoogle Scholar
Hüller, S., Masson-Laborde, P.E., Pesme, D., Casanova, M., Detering, F. & Maximov, A. (2006). Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering. Phys. Plasmas 13, 22703.CrossRefGoogle Scholar
Hüller, S. & Porzio, A. (2010). Order statistics and extremal properties of spatially smoothed laser beams. Laser Part. Beams 28, 463.CrossRefGoogle Scholar
Hüller, S., Porzio, A. & Robiche, J. (2013). Order statistics of high-intensity speckles in stimulated Brillouin scattering and plasma-induced laser beam smoothing. New J. Phys. 15, 025003.CrossRefGoogle Scholar
Leadbetter, M.R. (1991). On a basis for peaks over thresholds modeling. Stat. Probab. Lett. 12, 357362.CrossRefGoogle Scholar
Lushnikov, P.M. & Vladimirova, N. (2010). Non-Gaussian statistics of multiple filamentation. Opt. Lett. 35, 1965.CrossRefGoogle ScholarPubMed
Malka, V., Faure, F., Hüller, S., Tikhonchuk, V. T., Weber, S. & Amiranoff, F. (2003). Enhanced spatio-temporal laser-beam smoothing in gas-jet plasmas. Phys. Rev. Lett. 90, 075002.CrossRefGoogle Scholar
Maximov, A.V., Ourdev, I.G., Pesme, D., Rozmus, W., Tikhonchuk, V.T. & Capjack, C.E. (2001). Plasma induced smoothing of a spatially incoherent laser beam and reduction of backward stimulated Brillouin scattering. Phys. Plasmas 8, 1319.CrossRefGoogle Scholar
Montina, A., Bortolozzo, U., Residori, S. & Arecchi, F.T. (2009). Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett. 103, 173901.CrossRefGoogle Scholar
Mounaix, P. & Divol, L. (2002). Near-threshold reflectivity fluctuations in the independent-convective-hot-spot-model limit of a spatially smoothed laser beam. Phys. Rev. Lett. 89, 165005.CrossRefGoogle ScholarPubMed
Mounaix, P., Divol, L., Hüller, S. & Tikhonchuk, V.T. (2000). Effects of spatial and temporal smoothing on stimulated Brillouin scattering in the independent-hot-spot model limit. Phys. Rev. Lett. 85, 45264529.CrossRefGoogle ScholarPubMed
Pesme, D. (1993). La Fusion Thermonucléaire Inertielle Par Laser (Dautray, R. and Watteau, J.P., Eds), pp. 456510. Paris: Eyrolles.Google Scholar
Pickands, J. III (1975). Statistical inference using extreme order statistics. Ann. Stat. 3, 119131.Google Scholar
Porzio, A. & Hüller, S. (2010). Extremal properties of weakly correlated random variable arising in speckle patterns. J. Stat. Phys. 138, 10101044.CrossRefGoogle Scholar
Rose, H.A. & Dubois, D.F. (1993a). Statistical properties of hot spots produced by a random phase plate. Phys. Fluids B 5, 590596.CrossRefGoogle Scholar
Rose, H.A. & DuBois, D.F. (1993b). Initial development of ponderomotive filaments in plasma from intense hot spots produced by a random phase plate. Phys. Fluids B 5, 33373356.CrossRefGoogle Scholar
Rose, H.A. & Mounaix, P. (2011). Diffraction-controlled backscattering threshold and application to Raman gap. Phys. Plasmas 18, 042109.CrossRefGoogle Scholar
Schmitt, A.J. & Afeyan, B.B. (1998). Time-dependent filamentation and stimulated Brillouin forward scattering in inertial confinement fusion plasmas. Phys. Plasmas 5, 503.CrossRefGoogle Scholar
Wiersma, D.S. (2008). The physics and applications of random lasers. Nat. Phys. 4, 359.CrossRefGoogle Scholar