Skip to main content

Estimating the timescale of Lobaria diversification

  • Carolina CORNEJO (a1) and Christoph SCHEIDEGGER (a1)

Using an ITS mutation rate as calibration reference, a three-locus timetree was generated for the genus Lobaria and its most important clades. The timetree resolved most clades with strong support and gave an estimate of the diversification time for Lobaria during the early Oligocene. A fossil impression from a 12–24 million-year-old Miocene deposit is hypothesized here to belong to an ancestral Lobaria species. Additionally, the age estimate indicates that the paleoclimate and the closing or opening of the Bering Strait played a major role in shaping the current distribution of most Lobaria species. It is hypothesized that the Bering land bridge acted as a major highway during warm-temperate climate periods, but as a barrier during Arctic climate times.

Hide All
Amo de Paz, G., Cubas, P., Divakar, P. K., Lumbsch, H. T. & Crespo, A. (2011) Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS ONE 6: e28161.
Ayala, F. J. (1997) Molecular clock mirages. Primates 8: 9.
Beimforde, C., Feldberg, K., Nylinder, S., Rikkinen, J., Tuovila, H., Dörfelt, H., Grube, M., Jackson, D. J., Reitner, J. & Seyfullah, L. J. (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Molecular Phylogenetics and Evolution 78: 386398.
Bouillé, M., Senneville, S. & Bousquet, J. (2011) Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea . Tree Genetics and Genomes 7: 469484.
Cornejo, C. & Scheidegger, C. (2015) Multi-gene phylogeny of the genus Lobaria: evidence of species-pair and allopatric cryptic speciation in East Asia. American Journal of Botany 102: 20582073.
Cummings, M. P. & Meyer, A. (2005) Magic bullets and golden rules: data sampling in molecular phylogenetics. Zoology 108: 329336.
Divakar, P. K., Del-Prado, R., Lumbsch, H. T., Wedin, M., Esslinger, T. L., Leavitt, S. D. & Crespo, A. (2012) Diversification of the newly recognized lichen-forming fungal lineage Montanelia (Parmeliaceae, Ascomycota) and its relation to key geological and climatic events. American Journal of Botany 99: 20142026.
dos Reis, M. & Yang, Z. (2013) The unbearable uncertainty of Bayesian divergence time estimation. Journal of Systematics and Evolution 51: 3043.
Drummond, A. J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
Drummond, A. J., Ho, S. Y., Rawlence, N. & Rambaut, A. (2007) A rough guide to BEAST 1.4. Available at:
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 19691973.
Gladenkov, A. Y., Oleinik, A. E., Marincovich, L. & Barinov, K. B. (2002) A refined age for the earliest opening of Bering Strait. Palaeogeography, Palaeoclimatology, Palaeoecology 183: 321328.
Honegger, R., Edwards, D. & Axe, L. (2013) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytologist 197: 264275.
Kaasalainen, U., Heinrichs, J., Krings, M., Myllys, L., Grabenhorst, H., Rikkinen, J. & Schmidt, A. (2015) Alectorioid morphologies in Paleogene lichens: new evidence and re-evaluation of the fossil Alectoria succini Mägdefrau. PLoS ONE 10: e0129526.
Leavitt, S. D., Esslinger, T. L., Divakar, P. K. & Lumbsch, H. T. (2012 a) Miocene divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen‐forming fungi (Ascomycota: Parmeliaceae). Biological Journal of the Linnean Society 107: 920937.
Leavitt, S. D., Esslinger, T. L., Divakar, P. K. & Lumbsch, H. T. (2012 b) Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions. BMC Evolutionary Biology 12: 176.
Leavitt, S. D., Esslinger, T. L. & Lumbsch, H. T. (2012 c) Neogene-dominated diversification in neotropical montane lichens: dating divergence events in the lichen-forming fungal genus Oropogon (Parmeliaceae). American Journal of Botany 99: 17641777.
Leavitt, S. D., Fernández‐Mendoza, F., Pérez‐Ortega, S., Sohrabi, M., Divakar, P. K., Vondrák, J., Lumbsch, H. T. & St. Clair, L. L. (2013 a) Local representation of global diversity in a cosmopolitan lichen‐forming fungal species complex (Rhizoplaca, Ascomycota). Journal of Biogeography 40: 17921806.
Leavitt, S. D., Lumbsch, H. T., Stenroos, S. & St. Clair, L. L. (2013 b) Pleistocene speciation in North American lichenized fungi and the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS ONE 8: e85240.
Leavitt, S. D., Kraichak, E., Vondrak, J., Nelsen, M. P., Sohrabi, M., Perez-Ortega, S., St. Clair, L. L. & Lumbsch, H. T. (2016) Cryptic diversity and symbiont interactions in rock-posy lichens. Molecular Phylogenetics and Evolution 99: 261274.
Lockwood, J. D., Aleksić, J. M., Zou, J., Wang, J., Liu, J. & Renner, S. S. (2013) A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Molecular Phylogenetics and Evolution 69: 717727.
Lücking, R., Huhndorf, S., Pfister, D. H., Plata, E. R. & Lumbsch, H. T. (2009) Fungi evolved right on track. Mycologia 101: 810822.
MacGinitie, H. D. (1937) The flora of the Weaverville beds of Trinity County, California. Carnegie Institution of Washington Publication 465: 83151.
Marincovich, L. & Gladenkov, A. Y. (1999) Evidence for an early opening of the Bering Strait. Nature 397: 149151.
Moncada, B., Lücking, R. & Betancourt-Macuase, L. (2013) Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus Lobariella . Lichenologist 45: 203263.
Peterson, E. B. (2000) An overlooked fossil lichen (Lobariaceae). Lichenologist 32: 298300.
Poinar, G., Peterson, E. & Platt, J. (2000) Fossil Parmelia in new world amber. Lichenologist 32: 263269.
Prieto, M. & Wedin, M. (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8: e65576.
Prieto, M. & Wedin, M. (2016) Phylogeny, taxonomy and diversification events in the Caliciaceae . Fungal Diversity 82: 221238.
Rambaut, A. (2009) FigTree v1.3.1. Tree figure drawing tool. Available at:
Rambaut, A., Suchard, M., Xie, D. & Drummond, A. (2014) Tracer v1.6. Available at:
Ran, J.-H., Wei, X.-X. & Wang, X.-Q. (2006) Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes. Molecular Phylogenetics and Evolution 41: 405419.
Rikkinen, J. (2003) Calicioid lichens from European Tertiary amber. Mycologia 95: 10321036.
Rikkinen, J. & Poinar, G. O. (2002) Fossilised Anzia (Lecanorales, lichen-forming Ascomycota) from European Tertiary amber. Mycological Research 106: 984990.
Rikkinen, J. & Poinar, G. O. (2008) A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. Journal of Experimental Botany 59: 10071011.
Scheidegger, C. (1995) Early development of transplanted isidioid soredia of Lobaria pulmonaria in an endangered population. Lichenologist 27: 361374.
Schenk, J. J. (2016) Consequences of secondary calibrations on divergence time estimates. PLoS ONE 11: e0148228.
Škaloud, P., Friedl, T., Hallmann, C., Beck, A. & Dal Grande, F. (2016) Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). Journal of Phycology 52: 599617.
Takahata, N. (2007) Molecular clock: an anti-neo-Darwinian legacy. Genetics 176: 16.
Wang, Q. & Mao, K. S. (2016) Puzzling rocks and complicated clocks: how to optimize molecular dating approaches in historical phytogeography. New Phytologist 209: 13531358.
Wen, J., Zhang, J., Nie, Z.-L., Zhong, Y. & Sun, H. (2014) Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Frontiers in Genetics 5: 4.
Wen, J., Nie, Z.-L. & Ickert-Bond, S. M. (2016) Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. Journal of Systematics and Evolution 54: 469490.
Wilke, T., Schultheiß, R. & Albrecht, C. (2009) As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin 27: 2545.
Yoshimura, I. (1971) The genus Lobaria of Eastern Asia. Journal of the Hattori Botanical Laboratory 34: 231264.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Lichenologist
  • ISSN: 0024-2829
  • EISSN: 1096-1135
  • URL: /core/journals/lichenologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Cornejo and Scheidegger supplementary material
Figure S1

 PDF (109 KB)
109 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed