Skip to main content

Genetic diversity of photobionts in Antarctic lecideoid lichens from an ecological view point

  • Ulrike RUPRECHT (a1), Georg BRUNAUER (a1) and Christian PRINTZEN (a2)

As part of a comprehensive study on lecideoid lichens in Antarctica, we investigated the photobiont diversity and abundance in 119 specimens of lecideoid lichens from 11 localities in the continental and maritime Antarctic. A phylogeny of these photobiont ITS sequences, including samples from arctic, alpine and temperate lowland regions, reveals the presence of five major Trebouxia clades in Antarctic lecideoid lichens. Two clades are formed by members of the T. jamesii and T. impressa aggregates but for all other clades no close match to any known Trebouxia species could be found in sequence databases. One genetically uniform and well-supported Trebouxia clade was found only in the climatically unique cold desert regions of the Antarctic (preliminarily called Trebouxia sp.URa1), where it is preferentially associated with the highly adapted Antarctic endemic lichen Lecidea cancriformis. Levels of genetic photobiont diversity differ slightly, but insignificantly among ecological regions of the Antarctic and do not decrease towards regions with more unfavourable ecological conditions. The genetic diversity of photobionts varies among mycobiont species. Most pairwise comparisons reveal that these differences are insignificant, probably due to the small sample size for most species. The Antarctic lichens studied here are predominantly not specific for a single photobiont species or lineage, except for Lecidella greenii and L. siplei. These two species are preferably associated with Trebouxia sp. URa2, although in the sampling areas of both species, a pool of several other photobionts is available. Lecidea cancriformis associates with the highest diversity of photobionts followed by L. andersonii.

Hide All
Adams B. J., Bardgett R. D., Ayres E., Wall D. H., Aislabie J., Bamforth S., Bargagli R., Cary C., Cavacini P., Connell L. et al. (2006) Diversity and distribution of Victoria Land Biota. Soil Biology & Biochemistry 38: 30033018.
Aoki M., Nakano T., Kanda H. & Deguchi H. (1998) Photobionts isolated from Antarctic lichens. Journal of Marine Biotechnology 6: 3943.
Barták M., Váczi P., Hájek J. & Smykla J. (2007) Low-temperature limitation of primary photosynthetic processes in Antarctic lichens Umbilicaria Antarctica and Xanthoria elegans. Polar Biology 31: 4751.
Beck A. (1999) Photobiont inventory of a lichen community growing on heavy metal-rich rock. Lichenologist 31: 501–510.
Beck A., Friedl T. & Rambold G. (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytologist 139: 709720.
Beck A., Kasalicky T. & Rambold G. (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytologist 153: 317326.
Blaha J., Baloch E. & Grube M. (2006) High photobiont diversity in symbioses of the euryoecious lichen Lecanora rupicola (Lecanoraceae, Ascomycota). Biological Journal of the Linnean Society 88: 283293.
Broady P. & Weinstein R. N. (1998) Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarctic Science 10: 376385.
Casano L. M., del Campo E. M., García-Breijo F. J., Reig-Armiñana J., Gasulla F., del Hoyo A., Guéra A. & Barreno E. (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environmental Microbiology 13: 806818.
Castresana J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540552.
Clement M., Posada D. & Crandall K. A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 16571660.
Convey P. & McInnes S. J. (2005) Exceptional Tardigrade-dominated ecosystem in Ellsworth Land, Antarctica. Ecology 86: 519527.
Domaschke S., Fernández Mendoza F., García M. A., Martín M. P. & Printzen C. (2012) Low genetic diversity in Antarctic populations of the lichen-forming ascomycete Cetraria aculeata and its photobiont. Polar Research 31: 17353.
Doran P. T., Priscu J. C., Lyons W. B., Walsch J. E., Fountain A. G., McKnight D. M., Moorhead D. L., Virginia R. A., Wall D. H., Clow G. D. et al. (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415: 517520.
Ettl H. & Gärtner G. (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer.
Fernández-Mendoza F., Domaschke S., García M. A., Jordan P., Martín M. P. & Printzen C. (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Molecular Ecology 20: 12081232.
Friedl T. (1989) Systematik und Biologie von Trebouxia (Microthamniales, Chlorophyta) als Phycobiont der Parmeliaceae (Lichenisierte Ascomyceten). Ph.D. thesis, University of Bayreuth.
Green T. G. A. (2009) Lichens in arctic, antarctic and alpine ecosystems. Rundgespräche der Kommission für Ökologie, Ökologische Rolle der Flechten. 36: 4565.
Green T. G. A., Schroeter B. & Sancho L. G. (1999) Plant life in Antarctica. In Handbook of Functional Plant Ecology (Pugnaire F. I. & Valladares F., eds): 495543. New York, Basel: Marcel Dekker Inc.
Green T. G. A., Schroeter B. & Sancho L. (2007) Plant life in Antarctica. In Functional Plant Ecology, 2nd Edn. (Pugnaire F. I. & Valladares F., eds): 389433. Boca Raton, Florida: CRC Press.
Green T. G. A., Sancho L. G., Türk R., Seppelt R. D. & Hogg I. D. (2011) High diversity of lichens at 84°S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica. Polar Biology 34: 12111220.
Guzow-Krzeminska B. (2006) Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. Lichenologist 38: 469476.
Hauck M., Helms G. & Friedl T. (2007) Photobiont selectivity in the lichens Hypogymnia physodes and Lecanora conizeaoides. Lichenologist 39: 195204.
Helms G. W. F. (2003) Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Ph.D. thesis, Georg-August Universität, Göttingen.
Hertel H. (1984) Über saxicole, lecideoide Flechten der Subantarktis. Beih. Nova Hedwigia 79: 399499.
Hertel H. (2007) Notes on and records of Southern Hemisphere lecideoid lichens. Bibliotheca Lichenologica 95: 267296.
Hildreth K. C. & Ahmadjian V. (1981) A study of Trebouxia and Pseudotrebouxia isolates from different lichens. Lichenologist 13: 6586.
Honegger R. (1996) Morphogenesis. In Lichen Biology (Nash T. H. III, ed.): 6587. Cambridge: Cambridge University Press.
Huelsenbeck J. P. & Ronquist F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.
Kappen L. (1993) Plant activity under snow and ice, with particular reference to lichens. Arctic 46: 297302.
Kappen L. (2000) Some aspects of the great success of lichens in Antarctica. Antarctic Science 12: 314324.
Kappen L. & Valladares F. (2007) Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autothrophs. In Functional Plant Ecology (Pugnaire F. I. & Valladares F., eds): 766. Boca Raton, Florida: CRC Press.
Kroken S. & Taylor J. W. (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103: 645660.
Lange O. L., Kilian E. & Ziegler H. (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobiont. Oecologia 71: 104110.
Librado P. & Rozas J. (2009) DnaSP v.5 A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 15: 14511452.
McKay C. P., Nienow J. A., Meyer M. A. & Friedmann E. I. (1993) Continuous nanoclimate data (1985–1988) from the Ross Desert (McMurdo Dry Valleys) cryptoendolithic microbial ecosystem. In Antarctic Research Series, Vol. 61: Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations (Bromwich D. H. and Stearns C. R., eds): 201207. Washington, DC: American Geophysical Union.
Monaghan A. J. & Bromwich D. H. (2008) Advances in describing recent Antarctic climate variability. Bulletin of the American Meteorological Society 9: 12951306.
Nelsen M. P. & Gargas A. (2009) Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). Bryologist 112: 404417.
Otálora M. A. G., Martínez I., O'Brien H., Molina M. C., Aragón G. & Lutzoni F. (2010) Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Molecular Phylogenetics and Evolution 56: 10891095.
Øvstedal D. O. & Lewis Smith R. I. (2001) Lichens of Antarctica and South Georgia: A Guide to Their Identification and Ecology. Cambridge: Cambridge University Press.
Pannewitz S., Green T. G. A., Maysek K., Schlensog M., Seppelt R., Sancho L. G., Türk R. & Schröter B. (2005) Photosynthetic responses of three common mosses from continental Antarctica. Antarctic Science 17: 341352.
Pannewitz S., Green T. G. A., Schlensog M., Seppelt R., Sancho L. & Schroeter B. (2006) Photosynthetic performance of Xanthoria mawsonii C. W. Dodge in coastal habitats, Ross Sea region, continental Antarctica. Lichenologist 38: 6781.
Peat H. J., Clarke A. & Convey P. (2007) Diversity and biogeography of the Antarctic flora. Journal of Biogeography 34: 132146.
Peksa O. & Škaloud P. (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Molecular Ecology 20: 39363948.
Piercey-Normore M. D. (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytologist 169: 331344.
Piercey-Normore M. D. & DePriest P. T. (2001) Algal switching among lichen symbioses. American Journal of Botany 88: 14901498.
Posada D. & Crandall K. A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817818.
Posada D. & Crandall K. A. (2001) Selecting models of nucleotide substitution: an application to Human Immunodeficiency Virus 1 (HIV-1). Molecular Biology and Evolution 18: 897906.
Rambold G., Friedl T. & Beck A. (1998) Photobionts in lichens: possible indicators of phylogenetic relationships? Bryologist 101: 392397.
Reijmer C. H. & van den Broeke M. R. (2001) Moisture source of precipitation in Western Dronning Maud Land, Antarctica. Antarctic Science 13: 210220.
Rodriguez F., Oliver J. L., Marin A. & Medina J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.
Romeike J., Friedl T., Helms G. & Ott S. (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized Ascomycetes) along a transect of the Antarctic Peninsula. Molecular Biology and Evolution 19: 12091217.
Ruprecht U., Lumbsch H. T., Brunauer G., Green T. G. A. & Türk R. (2010) Diversity of Lecidea (Lecideaceae, Ascomycota) species revealed by molecular data and morphological characters. Antarctic Science 22: 721726.
Ruprecht U., Lumbsch H. T., Brunauer G., Green T. G. A. & Türk R. (2012) Insights into the diversity of Lecanoraceae (Lecanorales, Ascomyceta) in continental Antarctica (Ross Sea region). Nova Hedwigia 94: 287306.
Seppelt R. D., Nimis P. L. & Castello M. (1998) The genus Sarcogyne (Acarosporaceae) in Antarctica. Lichenologist 30: 249258.
Simpson A. L. & Cooper A. F. (2002) Geochemistry of the Darwin Glacier region granitoids, southern Victoria Land. Antarctic Science 14: 425426.
Stickley C. E., Pike J., Leventer A., Dunbar R., Domack E. W., Brachfeld S., Manley P. & McClennan C. (2005) Deglacial ocean and climate seasonality in laminated diatom sediments, Mac.Robertson Shelf, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 227: 290310.
Swofford D. L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts: Sinauer Associates.
Tschermak-Woess E. (1988) The algal partner. In CRC Handbook of Lichenology, Vol. I. (Galun M., ed.): 3992. Boca Raton, Florida: CRC Press.
Thompson J. D., Higgins D. G. & Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 46734680.
Werth S. & Sork V. L. (2010) Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. American Journal of Botany 95: 821830.
White T. J., Bruns T. D., Lee S. B. & Taylor J. W. (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenies. In PCR Protocols: A Guide to Methods and Applications (Innis M. A., Gelfand D. H., Sninsky J. J. & White T. J., eds): 315322. San Diego: Academic Press.
Wirtz N., Lumbsch H. T., Green T. G. A., Türk R., Pintado A., Sancho L. & Schroeter B. (2003) Lichen fungi have low cyanobionts selectivity in maritime Antarcica. New Phytologist 160: 177183.
Wornik S. & Grube M. (2010) Joint dispersal does not imply maintenance of partnerships in lichen symbioses. Microbial Ecology 59: 150157.
Yahr R., Vilgalys R. & DePriest P. T. (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist 171: 847860.
Zahlbruckner A. (1925) Catalogus Lichenum Universalis. Vol III. Leipzig: Gebrüder Borntraeger.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Lichenologist
  • ISSN: 0024-2829
  • EISSN: 1096-1135
  • URL: /core/journals/lichenologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 137 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.