Skip to main content
×
Home
    • Aa
    • Aa

Lichen community change over a 15-year time period: effects of climate and pollution

  • Marianne EVJU (a1) and Inga E. BRUTEIG (a2)
Abstract
Abstract

Over the last decades, levels of sulphur deposition from air pollution have been substantially reduced in Norway, whereas levels of nitrogen deposition have been stable or somewhat increased. In parallel, a clear trend of increasing annual temperatures, as well as precipitation, is evident. Human impact on natural ecosystems is predicted to reduce biodiversity at regional scales through facilitating a few generalist species at the expense of species with narrow habitat requirements. In this study, we investigate changes in community composition and the abundance of dominant lichen species on birch in subalpine forests over a 15-year period. The study is based on repeated measurements in five monitoring sites in Norway, representing regional gradients in temperature and precipitation as well as in deposition of nitrogen and sulphur compounds. Two dominant species are studied in particular; the generalist Hypogymnia physodes and the subalpine birch specialist Melanelia olivacea. The largest change in species composition was found in the site with the biggest reduction in sulphur deposition during the 15-year period, whereas the site with low precipitation and low pollution loads had small changes in species composition. The abundance of the generalist H. physodes increased in all sites and the specialist M. olivacea decreased in abundance, especially in sites with both high precipitation and heavy nitrogen deposition. Our study thus suggests that a warmer, humid climate is beneficial for the generalist H. physodes.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. Aptroot & C. M. van Herk (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution 146: 293298.

A. M. Arft , M. D. Walker , J. Gurevitch , J. M. Alatalo , M. S. Bret-Harte , M. Dale , M. Diemer , F. Gugerli , G. H. R. Henry , M. H. Jones et al. (1999) Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecological Monographs 69: 491511.

Y. Baskin (1998) Winners and losers in a changing world. BioScience 48: 788792.

A. Bergamini , S. Ungricht & H. Hofmann (2009) An elevational shift of cryophilous bryophytes in the last century – an effect of climate warming? Diversity and Distributions 15: 871879.

R. Bobbink , K. Hicks , J. Galloway , T. Spranger , R. Alkemade , M. Ashmore , M. Bustamante , S. Cinderby , E. Davidson , F. Dentener et al. (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20: 3059.

A. J. Britton , C. M. Beale , W. Towers & R. L. Hewison (2009) Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biological Conservation 142: 17281739.

N. Cannone , S. Sgorbati & M. Guglielmin (2007) Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment 5: 360364.

P. Choler , R. Michalet & R. M. Callaway (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82: 32953308.

C. J. Ellis & B. J. Coppins (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. Journal of Biogeography 33: 16431656.

C. J. Ellis , B. J. Coppins , T. P. Dawson & M. R. D. Seaward (2007) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biological Conservation 140: 217235.

S. C. Elmendorf , G. H. R. Henry , R. D. Hollister , R. G. Björk , A. D. Bjorkman , T. V. Callaghan , L. Siegwart Collier , E. J. Cooper , J. H. C. Cornelissen , T. A. Day et al. (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters 15: 164175.

J. N. Galloway , F. Dentener , D. G. Capone , E. W. Boyer , R. W. Howarth , S. P. Seitzinger , G. P. Asner , C. C. Cleveland , P. A. Green , E. A. Holland et al. (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70: 153226.

L. H. Geiser & P. N. Neitlich (2007) Pollution and climate gradients in Western Oregon and Washington indicated by epiphytic macrolichens. Environmental Pollution 145: 203218.

M. Gottfried , H. Pauli , A. Futschik , M. Akhalkatsi , P. Barančok , J. L. B. Alonso , G. Coldea , J. Dick , B. Erschbamer , M. R. Fernández Calzado et al. (2012) Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2: 111115.

M. Hauck (2011) Site factors controlling epiphytic lichen abundance in northern coniferous forests. Flora 206: 8190.

D. L. Hawksworth (2002) Bioindication: calibrated scales and their utility. In Monitoring With Lichens – Monitoring Lichens ( P. L. Nimis , C. Scheidegger & P. A. Wolseley , eds): 1120. Dordrecht: Kluwer Academic Publishers.

E. Heegaard & V. Vandvik (2004) Climate change affects the outcome of competitive interactions – an application of principal response curves. Oecologia 139: 459466.

R. Hickling , D. B. Roy , J. K. Hill , R. Fox & C. D. Thomas (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12: 450455.

G. E. Insarov & B. Schroeter (2002) Lichen monitoring and climate change. In Monitoring With Lichens – Monitoring Lichens ( P. L. Nimis , C. Scheidegger & P. A. Wolseley , eds): 183201. Dordrecht: Kluwer Academic Publishers.

G. E. Insarov , S. M. Semenov & I. D. Insarova (1999) A system to monitor climate change with epilithic lichens. Environmental Monitoring and Assessment 55: 279298.

P. Johansson , H. Rydin & G. Thor (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience 14: 8191.

K. Klanderud & H. J. B. Birks (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13: 16.

M. Kuusinen (1996) Epiphyte flora and diversity on basal trunks of six old-growth forest tree species in southern and middle boreal Finland. Lichenologist 28: 443463.

J. Lenoir , J. C. Gegout , P. A. Marquet , P. de Ruffray & H. Brisse (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320: 17681771.

M. L. McKinney & J. L. Lockwood (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14: 450453.

P. L. Nimis , C. Scheidegger & P. Wolseley (eds) (2002) Monitoring With Lichens – Monitoring Lichens. Dordrecht: Kluwer Academic Publishers.

R. H. Økland (1996) Are ordination and constrained ordination alternative or complementary strategies in general ecological studies? Journal of Vegetation Science 7: 289292.

C. Parmesan & G. Yohe (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 3742.

G. Parolo & G. Rossi (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic and Applied Ecology 9: 100107.

J. Pinheiro & D. Bates (2000) Mixed-effect Models in S and S-Plus. New York: Springer.

M. Sonesson (1989) Water, light and temperature relations of the epiphytic lichens Parmelia olivacea and Parmeliopsis ambigua in Northern Swedish Lapland. Oikos 56: 402415.

M. Sonesson , C. Osborne & G. Sandberg (1994) Epiphytic lichens as indicators of snow depth. Arctic and Alpine Research 26: 159165.

C. J. F. ter Braak & I. C. Prentice (1988) A theory of gradient analysis. Advances in Ecological Research 18: 271317.

L. J. L. van den Berg , P. Vergeer , T. C. G. Rich , S. M. Smart , D. Guest & M. R. Ashmore (2011) Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Global Change Biology 17: 18711883.

C. M. van Herk , A. Aptroot & H. F. van Dobben (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34: 141154.

V. Vestreng , G. Myhre , H. Fagerli , S. Reis & L. Tarrason (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmospheric Chemistry and Physics 7: 36633681.

P. M. Vitousek , J. D. Aber , R. W. Howarth , G. E. Likens , P. A. Matson , D. W. Schindler , W. H. Schlesinger & D. G. Tilman (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737750.

C. Von Arb & C. Brunold (1990) Lichen physiology and air pollution. 1. Physiological responses of in situ Parmelia sulcata among air pollution zones within Biel, Switzerland. Canadian Journal of Botany 68: 3542.

M. D. Walker , C. D. Wahren , R. D. Hollister , G. H. Henry , L. E. Ahlquist , J. M. Alatalo , M. S. Bret-Harte , M. P. Calef , T. V. Callaghan , A. B. Carroll et al. (2006) Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 13421346.

S. Werth , H. Tommervik & A. Elvebakk (2005) Epiphytic macrolichen communities along regional gradients in northern Norway. Journal of Vegetation Science 16: 199208.

S. Will-Wolf , L. H. Geiser , P. N. Neitlich & A. H. Reis (2006) Forest lichen communities and environment – How consistent are relationships across scales? Journal of Vegetation Science 17: 171184.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Lichenologist
  • ISSN: 0024-2829
  • EISSN: 1096-1135
  • URL: /core/journals/lichenologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 275 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.