Skip to main content

The lifestyle of lichens in soil crusts

  • T. G. Allan GREEN (a1), Ana PINTADO (a1), Jose RAGGIO (a1) and Leopoldo Garcia SANCHO (a1)

Lichens are one of the common dominant biota in biological soil crusts (biocrusts), a community that is one of the largest in extent in the world. Here we present a summary of the main features of the lifestyle of soil crust lichens, emphasizing their habitat, ecophysiology and versatility. The soil crust is exposed to full light, often to high temperatures and has an additional water source, the soil beneath the lichens. However, despite the open nature of the habitat the lichens are active under shady and cooler conditions and avoid climate extremes of high temperature and light. In temperate and alpine habitats they can also be active for long periods, several months in some cases. They show a mixture of physiological constancy (e.g. similar activity periods and net photosynthetic rates) but also adaptations to the habitat (e.g. the response of net photosynthesis to thallus water content can differ for the same lichen species in Europe and the USA and some species show extensive rhizomorph development). Despite recent increased research, aspects of soil crust ecology, for example under snow, remain little understood.

Corresponding author
Hide All
Belnap, J. (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils 35: 128135.
Belnap, J., Büdel, B. & Lange, O. L. (2003) Biological soil crusts: characteristics and distribution. In Biological Soil Crusts: Structure, Function, and Management (J. Belnap & O. L. Lange, eds): 330. Berlin, Heidelberg: Springer.
Bowker, M. A., Belnap, J., Büdel, B., Sannier, C., Pietrasiak, N., Eldridge, D. J. & Rivera-Aguilar, V. (2016) Controls on distribution patterns of biological soil crusts at micro- to global scales. In Biological Soil Crusts: An Organizing Principle in Drylands (B. Weber, B. Büdel & J. Belnap, eds): 173197. Cham, Switzerland: Springer International.
Büdel, B., Colesie, C., Green, T. G. A., Grube, M., Lázaro Suau, R., Loewen-Schneider, K., Maier, S., Peer, T., Pintado, A., Raggio, J., et al. (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodiversity and Conservation 23: 16391658.
Castillo-Monroy, A. P., Maestre, F. T., Delgado-Baquerizo, M. & Gallardo, A. (2010) Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant and Soil 333: 2134.
Colesie, C., Green, T. G. A., Raggio, J. & Büdel, B. (2016) Summer activity patterns of Antarctic and high alpine lichen-dominated biological soil crusts – similar but different? Arctic, Antarctic, and Alpine Research 48: 449460.
Colesie, C., Williams, L. & Büdel, B. (2017) Water relations in the soil crust lichen Psora decipiens are optimized via anatomical variability. Lichenologist 49: 483492.
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M. O. & Pöschl, U. (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5: 459462.
Farrar, J. F. (1976) Ecological physiology of the lichen Hypogymnia physodes. I. Some effects of constant water saturation. New Phytologist 77: 93103.
Farrar, J. F. & Smith, D. C. (1976) Ecological physiology of the lichen Hypogymnia physodes. III. The importance of the rewetting phase. New Phytologist 77: 115125.
Gehrke, C. (1999) Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. Ecology 80: 18441851.
Green, T. G. A. (2017) Limits of photosynthesis in arid environments. In The Biology of Arid and Initial Soils (B. Steven, ed.): 123138. Berlin: De Gruyter.
Green, T. G. A., Pintado, A. & Sancho, L. G. (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In Plant Desiccation Tolerance (U. Lüttge, E. Beck & D. Bartels, eds): 89120. Berlin, Heidelberg: Springer.
Henskens, F. L., Green, T. G. A. & Wilkins, A. (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Annals of Botany 110: 555563.
Kershaw, K. A. (1985) Physiological Ecology of Lichens. Cambridge: Cambridge University Press.
Lange, O. L. (1953) Hitze- und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora 140: 3997.
Lange, O. L. (2001) Photosynthesis of soil-crust biota as dependent on environmental factors. In Biological Soil Crusts: Structure, Function, and Management (J. Belnap & O. L. Lange, eds): 217240. Berlin, Heidelberg: Springer.
Lange, O. L. (2003) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation: II. Diel and seasonal patterns of net photosynthesis and respiration. Flora 198: 5570.
Lange, O. L. & Green, T. G. A. (2003) Photosynthetic performance of a foliose lichen of biological soil-crust communities: long-term monitoring of the CO2 exchange of Cladonia convoluta under temperate habitat conditions. Bibliotheca Lichenologica 86: 257280.
Lange, O. L. & Green, T. G. A. (2005) Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia 142: 1119.
Lange, O. L., Belnap, J., Reichenberger, H. & Meyer, A. (1997) Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora 192: 115.
Lange, O. L., Belnap, J. & Reichenberger, H. (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Functional Ecology 12: 195202.
Larcher, W. (1995) Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 3rd Edition. Berlin, Heidelberg: Springer.
Lázaro, R., Cantón, Y., Solé-Benet, A., Bevan, J., Alexander, R., Sancho, L. G. & Puigdefábregas, J. (2007) The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badlands (SE Spain) and its landscape effects. Geomorphology 102: 252266.
Levitt, J. (1980) Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing and High Temperature Stresses. 2nd Edn. New York: Academic Press.
Li, X. R., Jia, X. H., Long, L. Q. & Zerbe, S. (2005) Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China). Plant and Soil 277: 375385.
Mazor, G., Kidron, G. J., Vonshak, A. & Abeliovich, A. (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology 21: 121130.
Pannewitz, S., Green, T. G. A., Scheidegger, C., Schlensog, M. & Schroeter, B. (2003 a) Activity pattern of the moss Hennediella heimii (Hedw.) Zand. in the Dry Valleys, Southern Victoria Land, Antarctica during the mid-austral summer. Polar Biology 26: 545551.
Pannewitz, S., Schlensog, M., Green, T. G. A., Sancho, L. G. & Schroeter, B. (2003 b) Are lichens active under snow in continental Antarctica? Oecologia 135: 3038.
Pannewitz, S., Green, T. G. A., Maysek, K., Schlensog, M., Seppelt, R., Sancho, L. G. & Schroeter, B. (2005) Photosynthetic responses of three common mosses from continental Antarctica. Antarctic Science 17: 341352.
Raggio, J., Pintado, A., Vivas, M., Sancho, L. G., Büdel, B., Colesie, C., Weber, B., Schroeter, B., Lázaro, R. & Green, T. G. A. (2014) Continuous chlorophyll fluorescence, gas exchange and microclimate monitoring in a natural soil crust habitat in Tabernas badlands, Almería, Spain: progressing towards a model to understand productivity. Biodiversity and Conservation 23: 18091826.
Raggio, J., Green, T. G. A., Sancho, L. G., Pintado, A., Colesie, C., Weber, B. & Büdel, B. (2017) Metabolic activity duration can be effectively predicted from macroclimatic data for biological soil crust habitats across Europe. Geoderma 306: 1017.
Ruprecht, U., Brunauer, G. & Türk, R. (2014) High photobiont diversity in the common European soil crust lichen Psora decipiens . Biodiversity and Conservation 23: 17711785.
Sancho, L. G., Belnap, J., Colesie, C., Raggio, J. & Weber, B. (2016) Carbon budgets of biological soil crusts at micro-, meso-, and global scales. In Biological Soil Crusts: An Organizing Principle in Drylands (B. Weber, B. Büdel & J. Belnap, eds): 287304. Cham, Switzerland: Springer International.
Sancho, L. G., Pintado, A., Navarro, F., Ramos, M., DePablo, M. A., Blanquer, J. M., Jose Raggio, R., Valladares, F. & Green, T. G. A. (2017) Recent warming and cooling in the Antarctic Peninsula region has rapid and large effects on lichen vegetation. Scientific Reports 7: 5689.
Schlensog, M., Green, T. G. A. & Schroeter, B. (2013) Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic. Oecologia 173: 5972.
Souza-Egipsy, V., Ascaso, C. & Sancho, L. G. (2002) Water distribution within terricolous lichens: potential influence on soil water infiltration. Mycological Research 106: 13671374.
Sun, W. Q. (2002) Methods for the study of water relations under desiccation stress. In Desiccation and Survival in Plants: Drying without Dying (M. Black & H. W. Pritchard, eds): 4791. Wallingford: CABI Publishing.
Vogel, S. (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Schilderung. Beitrage zur Biologie der Pflanzen 31: 45135.
Walters, C., Farrant, J. M., Pammenter, N. W. & Berjak, P. (2002) Desiccation stress and damage. In Desiccation and Survival in Plants: Drying without Dying (M. Black & H. W. Pritchard, eds): 263293. Wallingford: CABI Publishing.
Wang, X. P., Li, X. R., Xiao, H. L., Berndtsson, R. & Pan, Y. X. (2007) Effects of surface characteristics on infiltration patterns in an arid shrub desert. Hydrological Processes 21: 7279.
Weber, B., Büdel, B. & Belnap, J. (eds) (2016) Biological Soil Crusts: An Organizing Principle in Drylands. Cham, Switzerland: Springer International.
Williams, L., Colesie, C., Ullmann, A., Westberg, M., Wedin, M. & Büdel, B. (2017) Lichen acclimation to changing environments: photobiont switching vs. climate-specific uniqueness in Psora decipiens . Ecology and Evolution 7: 25602574.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Lichenologist
  • ISSN: 0024-2829
  • EISSN: 1096-1135
  • URL: /core/journals/lichenologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed