Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The paper describes an approach to the computation of the zero energy thresholds for the appearance of negative energy eigenvalues of Schrödinger operators.
1.Abramov, A. A., Balla, K. and Konyukhova, N. B., ‘Stable initial manifolds and singular boundary value problems for sets of ordinary differential equations’, Comput. Math. Banach Centre Publs13 (1984) 319–351.Google Scholar
2
2.Axelson, O., Iterative solution methods (Cambridge University Press, 1994).CrossRefGoogle Scholar
3
3.Birman, M. SH. and Solomyak, M. Z., ‘Estimates of the number of negative eigenvalues of the Schrödinger operator and its generalizations’, Estimates and asymptotics for discrete spectra of integral and differential equations, Advances in Soviet Mathematics 7.(ed. Birman, M. Sh., Amer. Math. Soc, Providence, RI, 1991) 1–55.CrossRefGoogle Scholar
4
4.Davies, E. B., One-parameter semigroups (Academic Press, London/New York, 1980).Google Scholar
5
5.Davies, E. B., ‘L1 properties of second order elliptic operators’, Bull. London Math. Soc.17 (1985) 417–36.CrossRefGoogle Scholar
6
6.Davies, E. B., Heat kernels and spectral theory (Cambridge University Press, 1989).CrossRefGoogle Scholar
7
7.Davies, E. B., Spectral theory and differential operators (Cambridge University Press, 1995).CrossRefGoogle Scholar
8
8.Goerisch, F., ‘Ein Stufenverfahren zur Berechnung von Eigenwertschranken ’, Numerical treatment of eigenvalue problems vol.4, ISNM 83 (ed. Albrecht, J. et al. , Verlag, Birkhauser-, Basel, 1987) 104–114.Google Scholar
9
9.Jensen, A. and Kato, T., ‘Spectral properties of Schrödinger operators and time decay of the wave equation’, Duke Math. J.46 (1979) 583–611.CrossRefGoogle Scholar
10
10.Klaus, M., ‘On the bound state of Schrödinger operators in one dimension’, Ann. Phys.108 (1977) 288–300.CrossRefGoogle Scholar
11
11.Klaus, M. and Simson, B., ‘Coupling constant thresholds in nonrelativistic quantum mechanics, I. Short range two body case’, Ann. Phys.130 (1980) 251–281.CrossRefGoogle Scholar
12
12.Lohner, R., ‘Verified solution of eigenvalue problems in ordinary differential equations’, Unpublished manuscript, 1990.Google Scholar
13
13.Plum, M., ‘Eigenvalue inclusions for second order ordinary differential operators by a numerical homotopy method’, J. Appl. Math, and Phys.41 (1990) 205–226.Google Scholar
14
14.Plum, M., ‘Bounds for eigenvalues of second order elliptic operators’, J. Appl. Math, and Phys.42 (1991) 848–863.Google Scholar
15
15.Plum, M., ‘Guaranteed numerical bounds for eigenvalues’, Spectral theory and computational methods of Sturm-Liouville problems (ed. Hinton, D. and Schaefer, P. W., Dekker, Marcel, New York, Basel, 1997).Google Scholar
16
16.Saad, Y., Numerical methods for large eigenvalue problems (Manchester University Press, 1992).Google Scholar
17
17.Simon, B., Trace ideals and their applications, London Math. Soc. Lecture Notes 35 (Cambridge University Press, 1979).Google Scholar