Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T17:28:26.463Z Has data issue: false hasContentIssue false

Modeling Morphogenesis in silico and in vitro: TowardsQuantitative, Predictive, Cell-based Modeling

Published online by Cambridge University Press:  11 July 2009

R. M. H. Merks
Affiliation:
CWI, Science Park 123, 1098 XG Amsterdam NCSB-NISB, Science Park 904, 1098 XH Amsterdam
P. Koolwijk*
Affiliation:
Laboratory for Physiology, Institute for Cardiovascular Research VU University Medical Center, 1081 BT Amsterdam
Get access

Abstract

Cell-based, mathematical models help make sense of morphogenesis—i.e. cells organizing into shape and pattern—by capturing cell behavior in simple, purely descriptive models. Cell-based models then predict the tissue-level patterns the cells produce collectively. The first step in a cell-based modeling approach is to isolate sub-processes, e.g. the patterning capabilities of one or a few cell types in cell cultures. Cell-based models can then identify the mechanisms responsible for patterning in vitro. This review discusses two cell culture models of morphogenesis that have been studied using this combined experimental-mathematical approach: chondrogenesis (cartilage patterning) and vasculogenesis (de novo blood vessel growth). In both these systems, radically different models can equally plausibly explain the in vitro patterns. Quantitative descriptions of cell behavior would help choose between alternative models. We will briefly review the experimental methodology (microfluidics technology and traction force microscopy) used to measure responses of individual cells to their micro-environment, including chemical gradients, physical forces and neighboring cells. We conclude by discussing how to include quantitative cell descriptions into a cell-based model: the Cellular Potts model.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarie, D., Glazier, J. A., Jacobson, S. C.. Compact microfluidic structures for generating spatial and temporal gradients. Anal. Chem., 79 (2007), No. 24, 94719477. CrossRef
Ambrosi, D., Gamba, A., Serini, G.. Cell directional persistence and chemotaxis in vascular morphogenesis. B. Math. Biol., 66 (2004), No. 6, 18511873. CrossRef
A. R. A. Anderson, M. A. J. Chaplain, K. A. Rejniak, editors. Single-Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhaüser, Basel, Switzerland, 2007.
Bakal, C., Aach, J., Church, G., Perrimon, N.. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science, 316 (2007), No. 5832, 17531756. CrossRef
A. Balter, R. M. H. Merks, N. J. Popławski, M. Swat, J. A. Glazier. The Glazier–Graner–Hogeweg model: Extensions, future directions, and opportunities for further study. In A. R. A. Anderson, M. A. J. Chaplain, K. A. Rejniak, editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interaction, pages 151–167. Birkhaüser, Basel, Switzerland, 2007.
Beltman, J. B., Maree, A. F. M., Lynch, J. N., Miller, M. J., de Boer, R. J.. Lymph node topology dictates T cell migration behavior. J. Exp. Med., 204 (2007), No. 4, 771780. CrossRef
Brodlan, G. W., Clausi, D. A.. Embryonic tissue morphogenesis modeled by FEM. J. Biomech. Eng.-T. ASME, 116 (1994), No. 2, 146155.
Caille, N., Thoumine, O., Tardy, Y., Meister, J.-J.. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech., 35 (2002), No. 2, 177187. CrossRef
Chen, R. R., Silva, E. A., Yuen, W. W., Brock, A. A., Fischbach, C., Lin, A. S., Guldberg, R. E., Mooney, D. J.. Integrated approach to designing growth factor delivery systems. FASEB J., 21 (2007), No. 14, 3896903. CrossRef
S. Christley, M. S. Alber, S. A. Newman. Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Comput. Biol., 3 (2007), No. 4, e76.
Cickovski, T., Aras, K., Alber, M. S., Izaguirre, J. A., Swat, M., Glazier, J. A., Merks, R. M. H., Glimm, T., Hentschel, H. G. E., Newman, S. A.. From genes to organisms via the cell - a problem-solving environment for multicellular development. Comput. Sci. Eng., 9 (2007), No. 4, 5060. CrossRef
Davidson, E. H.. A genomic regulatory network for development. Science, 295 (2002), No. 5560, 16691678. CrossRef
Flenner, E., Marga, F., Neagu, A., Kosztin, L., Forgacs, G.. Relating biophysical properties across scales. Curr. Top. Dev. Biol., 81 (2008), 461483. CrossRef
G. Forgacs, S. A. Newman. Biological physics of the developing embryo. Cambridge University Press, 2005.
Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., Talia, S. D., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.. Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett., 90 (2003), No. 11, 118101. CrossRef
J. A. Glazier, A. Balter, N. J. Popławski. Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak, editors, Single Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interaction, pages 79–106. Birkhaüser, Basel, Switzerland, 2007.
Glazier, J. A., Graner, F.. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E, 47 (1993), No. 3, 21282154. CrossRef
Grieneisen, V. A., Xu, J., Marée, A. F. M., Hogeweg, P., Scheres, B.. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 449 (2007), No. 7165, 100813. CrossRef
Guidolin, D., Nico, B., Belloni, A. S., Nussdorfer, G. G., Vacca, A., Ribatti, D.. Morphometry and mathematical modelling of the capillary-like patterns formed in vitro by bone marrow macrophages of patients with multiple myeloma. Leukemia, 21 (2007), No. 10, 22013. CrossRef
Hutson, M. S., Brodland, G. W., Yang, J., Viens, D.. Cell sorting in three dimensions: Topology, fluctuations, and fluidlike instabilities. Phys. Rev. Lett., 101 (2008), No. 14, 4. CrossRef
Käfer, J., Hayashi, T., Marée, A. F. M., Carthew, R. W., Graner, F.. Cell adhesion and cortex contractility determine cell patterning in the drosophila retina. Proc. Natl. Acad. Sci. U.S.A., 104 (2007), No. 47, 1854954. CrossRef
K. Keren, Z. Pincus, G. M. Allen, E. L. Barnhart, G. Marriott, A. Mogilner, J. A. Theriot. Mechanism of shape determination in motile cells. Nature, 453 (2008), No. 7194.
Kiskowski, M. A., Alber, M. S., Thomas, G. L., Glazier, J. A., Bronstein, N. B., Pu, J., Newman, S. A.. Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning. Dev. Biol., 271 (2004), No. 2, 37287. CrossRef
Manoussaki, D.. A mechanochemical model of angiogenesis and vasculogenesis. ESAIM-Math. Model. Num., 37 (2003), No. 4, 581599. CrossRef
Manoussaki, D., Lubkin, S. R., Vernon, R. B., Murray, J. D.. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor., 44 (1996), No. 3-4, 271282. CrossRef
A. F. M. Marée, V. A. Grieneisen, P. Hogeweg. The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis. In A. R. A. Anderson, M. J. Chaplain, K. A. Rejniak, editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interaction, pages 107–136. Birkhaüser, Basel, Switzerland, 2007.
Marée, A. F. M., Hogeweg, P.. Modelling dictyostelium discoideum morphogenesis: the culmination. B. Math. Biol., 64 (2002), No. 2, 327353. CrossRef
Marée, A. F. M., Jilkine, A., Dawes, A., Grieneisen, V. A., Edelstein-Keshet, L.. Polarization and movement of keratocytes: A multiscale modelling approach. B. Math. Biol., 68 (2006), No. 5, 11691211. CrossRef
Merks, R. M. H., Glazier, J. A.. A cell-centered approach to developmental biology. Phys. A, 352 (2005), No. 1, 113130. CrossRef
Merks, R. M. H., Newman, S. A., Glazier, J. A.. Cell-oriented modeling of in vitro capillary development. In ACRI 2004: Sixth International conference on Cellular Automata for Research and Industry, Lect. Notes Comput. Sc., 3305 (2004), 425434. CrossRef
Merks, R. M. H., Brodsky, S. V., Goligorksy, M. S., Newman, S. A., Glazier, J. A.. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289 (2006), No. 1, 4454. CrossRef
Merks, R. M. H., Glazier, J. A.. Dynamic mechanisms of blood vessel growth. Nonlinearity, 19 (2006), No. 1, C1C10. CrossRef
R. M. H. Merks, E. D. Perryn, A. Shirinifard, J. A. Glazier. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol., 4 (2008), No. 9, e1000163.
Namy, P., Ohayon, J., Tracqui, P.. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol., 227 (2004), No. 1, 103120. CrossRef
Newman, T.. Modeling multicellular systems using subcellular elements. Math. Biosci. Eng., 2 (2005), No. 3, 613624. CrossRef
Palsson, E.. A 3-D model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems. J. Theor. Biol., 254 (2008), No. 1, 113. CrossRef
Petronis, S., Gretzer, C., Kasemo, B., Gold, J.. Model porous surfaces for systematic studies of material-cell interactions. J. Biomed. Mater. Res. A, 66 (2003), No. 3, 70721. CrossRef
Popławski, N. J., Shirinifard, A., Swat, M., Glazier, J. A.. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Math. Biosci. Eng., 5 (2008), No. 2, 355388.
Reinhart-King, C. A., Dembo, M., Hammer, D. A.. The dynamics and mechanics of endothelial cell spreading. Biophys. J., 89 (2005), No. 1, 67689. CrossRef
Reinhart-King, C. A., Dembo, M., Hammer, D. A.. Cell-cell mechanical communication through compliant substrates. Biophys. J., 95 (2008), No. 12, 604451. CrossRef
Rejniak, K. A.. An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J. Theor. Biol., 247 (2007), No. 1, 186204. CrossRef
Rejniak, K. A., Anderson, A. R. A.. A computational study of the development of epithelial acini: I. sufficient conditions for the formation of a hollow structure. B. Math. Biol., 70 (2008), No. 3, 677712. CrossRef
Rieu, J. P., Upadhyaya, A., Glazier, J. A., Ouchi, N. B., Sawada, Y.. Diffusion and deformations of single hydra cells in cellular aggregates. Biophys. J., 79 (2000), No. 4, 19031914. CrossRef
Sandersius, S. A., Newman, T. J.. Modeling cell rheology with the subcellular element model. Phys. Biol., 5 (2008), No. 1, 015002. CrossRef
Savill, N. J., Hogeweg, P.. Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol., 184 (1997), No. 3, 229235. CrossRef
Sengers, B. G., Donkelaar, C. C. V., Oomens, C. W. J., Baaijens, F. P. T.. The local matrix distribution and the functional development of tissue engineered cartilage, a finite element study. Ann. Biomed. Eng., 32 (2004), No. 12, 17181727. CrossRef
Sengers, B. G., Taylor, M., Please, C. P., Oreffo, R. O. C.. Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials, 28 (2007), No. 10, 19261940. CrossRef
Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.. Modeling the early stages of vascular network assembly. EMBO J., 22 (2003), No. 8, 17719. CrossRef
Shamloo, A., Ma, N., Poo, M.-M., Sohn, L. L., Heilshorn, S. C.. Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip, 8 (2008), No. 8, 12929. CrossRef
Sun, T., McMinn, P., Coakley, S., Holcombe, M., Smallwood, R., MacNeil, S.. An integrated systems biology approach to understanding the rules of keratinocyte colony formation. J. Roy. Soc. Interface, 4 (2007), No. 17, 10771092. CrossRef
Szabo, A., Mehes, E., Kosa, E., Czirok, A.. Multicellular sprouting in vitro. Biophys. J., 95 (2008), No. 6, 270210. CrossRef
Szabo, A., Perryn, E. D., Czirok, A.. Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett., 98 (2007), No. 3, 038102. CrossRef
Y. Tsukada, K. Aoki, T. Nakamura, Y. Sakumura, M. Matsuda, S. Ishii. Quantification of local morphodynamics and local GTPase activity by edge evolution tracking. PLoS Comput. Biol., 4 (2008), No. 11, e1000223.
Tymchenko, N., Wallentin, J., Petronis, S., Bjursten, L. M., Kasemo, B., Gold, J.. A novel cell force sensor for quantification of traction during cell spreading and contact guidance. Biophys. J., 93 (2007), No. 1, 33545. CrossRef
Vaziri, A., Gopinath, A.. Cell and biomolecular mechanics in silico. Nat. Mater., 7 (2008), No. 1, 1523. CrossRef
Walker, D., Southgate, J., Hill, G., Holcombe, A., Hose, D., Wood, S., Neil, S. M., Smallwood, R.. The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems, 76 (2004), No. 1-3, 89100. CrossRef
Walker, G. M., Sai, J., Richmond, A., Stremler, M., Chung, C. Y., Wikswo, J. P.. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip, 5 (2005), No. 6, 611618. CrossRef
Xu, Z., Chen, N., Shadden, S. C., Marsden, J. E., Kamocka, M. M., Rosen, E. D., Alber, M. S.. Study of blood flow impact on growth of thrombi using a multiscale model. Soft Matter, 5 (2009), No. 4, 769779. CrossRef
Yin, Z., Noren, D., Wang, C. J., Hang, R., Levchenko, A.. Analysis of pairwise cell interactions using an integrated dielectrophoretic-microfluidic system. Mol. Syst. Biol., 4 (2008), 232. CrossRef
Zeng, W., Thomas, G. L., Glazier, J. A.. Non-turing stripes and spots: a novel mechanism for biological cell clustering. Phys. A, 341 (2004), 482494. CrossRef