Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Zhao, Tiehong 2012. New construction of fundamental domains for certain Mostow groups. Pacific Journal of Mathematics, Vol. 259, Issue. 1, p. 209.


    ×
  • Mathematical Proceedings of the Cambridge Philosophical Society, Volume 150, Issue 2
  • March 2011, pp. 313-342

A minimal volume arithmetic cusped complex hyperbolic orbifold

  • TIEHONG ZHAO (a1)
  • DOI: http://dx.doi.org/10.1017/S0305004110000526
  • Published online: 08 October 2010
Abstract
Abstract

The sister of Eisenstein–Picard modular group is described explicitly in [10], whose quotient is a noncompact arithmetic complex hyperbolic 2-orbifold of minimal volume (see [16]). We give a construction of a fundamental domain for this group. A presentation of that lattice can be obtained from that construction, which relates to one of Mostow's lattices.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]M. Deraux , E. Falbel and J. Paupert New constructions of fundamental polyhedra in complex hyperbolic space. Acta Math. 194 (2005), no. 2, 155201.

[2]E. Falbel and J. R. Parker The Geometry of Eisenstein–Picard Modular Group. Duke Math. J. 131 (2006), no. 2, 249289.

[4]G. Francsics and P. Lax A semi-explicit fundamental domain for the Picard Modular Group in complex hyperbolic space. Contemp. Math. 368 (2005), 211226.

[8]R.-P. Holzapfel A class of minimal surfaces in the unknown region of surface geography. Math. Nachr. 98 (1980), 211232.

[9]G. D. Mostow On a remarkable class of polyhedra in complex hyperbolic space. Pacific J. Math. 86 (1980), 171276.

[10]J. R. Parker On the volumes of cusped, complex hyperbolic manifolds and orbifolds. Duke Math. J. 94 (1998), No. 3, 433464.

[11]J. R. Parker Complex hyperbolic lattices. Contemp. Math. 501 (2009), 142.

[12]J. R. Parker Cone metrics on the sphere and Livné's lattices. Acta Math. 196 (2006), 164.

[13]E. Picard Sur des formes quadratiques ternaires indéfinies indéterminées conjuguées et sur les fonctions hyperfuchsiennes correspondantes. Acta Math. 5 (1884), 121182.

[14]E. Picard Sur des fonctions de deux variables indépendentes analogues aux fonctions modulaires. Acta Math. 2 (1883), 114135.

[15]G. P. Scott The geometries of 3-manifolds. Bull. London Math. Soc. 15 (1983), 401487.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×