Hostname: page-component-797576ffbb-bqjwj Total loading time: 0 Render date: 2023-12-05T17:41:56.015Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

The space of immersed surfaces in a manifold

Published online by Cambridge University Press:  16 January 2013

DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB. e-mail:


We study the cohomology of the space of immersed genus g surfaces in a simply-connected manifold. We compute the rational cohomology of this space in a stable range which goes to infinity with g. In fact, in this stable range we are also able to obtain information about torsion in the cohomology of this space, as long as we localise away from (g-1).

Research Article
Copyright © Cambridge Philosophical Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



[Ada93]Adachi, M.Embeddings and Immersions. Transl. Math. Monogr, vol. 124 (American Mathematical Society, Providence, RI, 1993). Translated from the 1984 Japanese original by Kiki Hudson.Google Scholar
[BL83]Bass, H. and Lubotzky, A.Automorphisms of groups and of schemes of finite type Israel J. Math. 44 (1983), no. 1, 122.Google Scholar
[Bol12]Boldsen, S.Improved homological stability for the mapping class group with integral or twisted coefficients. Math. Z. 270 (2012), 297329.Google Scholar
[CM09]Cohen, R. and Madsen, I.Surfaces in a background space and the homology of mapping class group. Proc. Symp. Pure Math. 80 (2009), no. 1, 4376.Google Scholar
[CM11]Cohen, R. and Madsen, I.Stability for closed surfaces in a background space. Homology Homotopy Appl. 13 (2011), no. 2, 301313.Google Scholar
[CMM91]Cervera, V., Mascaró, F. and Michor, P. W.The action of the diffeomorphism group on the space of immersions. Differential Geom. Appl. 1 (1991), no. 4, 391401.Google Scholar
[EE69]Earle, C. J. and Eells, J.A fibre bundle description of Teichmueller theory. J. Differential Geom. 3 (1969), 1943.Google Scholar
[ERW12]Ebert, J. and Randal-Williams, O.Stable cohomology of the universal Picard varieties and the extended mapping class group. Doc. Math. 17 (2012), 417450.Google Scholar
[GMTW09]Galatius, S., Madsen, I., Tillmann, U. and Weiss, M.The homotopy type of the cobordism category. Acta Math. 202 (2009), no. 2, 195239.Google Scholar
[Joh80]Johnson, D.Spin structures and quadratic forms on surfaces. J. London Math. Soc. (2) 22 (1980), no. 2, 365373.Google Scholar
[Lai74]Lai, H. F.On the topology of the even-dimensional complex quadrics. Proc. Amer. Math. Soc. 46 (1974), 419425.Google Scholar
[Loo96]Looijenga, E.Stable cohomology of the mapping class group with symplectic coefficients and of the universal Abel–Jacobi map. J. Algebraic Geom. 5 (1996), no. 1, 135150. 1358038 (97g:14026)Google Scholar
[MM05]Michor, P. W. and Mumford, D.Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10 (2005), 217245 (electronic).Google Scholar
[MT01]Madsen, I. and Tillmann, U.The stable mapping class group and Q(ℂ; ℙ+). Invent. Math. 145 (2001), no. 3, 509544.Google Scholar
[Mum83]Mumford, D.Towards an enumerative geometry of the moduli space of curves. Arithmetic and geometry. Vol. II, Progr. Math., vol. 36 (Birkhäuser Boston, Boston, MA, 1983), pp. 271328.Google Scholar
[MW07]Madsen, I. and Weiss, M.The stable moduli space of Riemann surfaces: Mumford's conjecture. Ann. of Math. (2) 165 (2007), no. 3, 843941.Google Scholar
[RW09]Randal–Williams, O. Resolutions of moduli spaces and homological stability. arXiv:0909.4278v3, 2009.Google Scholar
[RW10]Randal-Williams, O., Homology of the moduli spaces and mapping class groups of framed, r-Spin and Pin surfaces. arXiv:1001.5366, 2010.Google Scholar
[Sma59]Smale, S.The classification of immersions of spheres in Euclidean spaces. Ann. of Math. (2) 69 (1959), 327344.Google Scholar
[Swa60]Swan, R. G.The nontriviality of the restriction map in the cohomology of groups. Proc. Amer. Math. Soc. 11 (1960), 885887.Google Scholar