Skip to main content
×
×
Home

The Catalan simplicial set

  • MITCHELL BUCKLEY (a1), RICHARD GARNER (a1), STEPHEN LACK (a1) and ROSS STREET (a1)
Abstract

The Catalan numbers are well known to be the answer to many different counting problems, and so there are many different families of sets whose cardinalities are the Catalan numbers. We show how such a family can be given the structure of a simplicial set. We show how the low-dimensional parts of this simplicial set classify, in a precise sense, the structures of monoid and of monoidal category. This involves aspects of combinatorics, algebraic topology, quantum groups, logic, and category theory.

Copyright
References
Hide All
[1]Bénabou, J.Introduction to bicategories. Lecture Notes in Math. 47 (Springer-Verlag, 1967), 177.
[2]Burroni, A.T-catégories (catégories dans un triple). Cahiers Topologie Géom. Différentielle Catég. 12 (1971), 215321.
[3]Day, B. and Street, R.Quantum categories, star autonomy and quantum groupoids. In Galois Theory, Hopf Algebras and Semiabelian Categories. Fields Institute Communications 43 (American Math. Soc. 2004), 187226.
[4]Cegarra, A. M. and Heredia, B. A.Geometric realisations of tricategories. Algebr. Geom. Topol. 14 (2014), 19972064. (see http://arxiv.org/abs/1203.3664).
[5]Donaghey, R. and Shapiro, L.Motzkin numbers. J. Combin. Theory Series A 23 (1977), no. 3, 291301.
[6]Gabriel, P. and Zisman, M.Calculus of fractions and homotopy theory. Ergeb. der Math. u. Grenzgeb. vol. 35 (Springer, 1967).
[7]Gordon, R., Power, A. J. and Street, R.Coherence for tricategories. Mem. Amer. Math. Soc. 117 no. 558 (1995), vi+81 pp.
[8]Grandis, M.Lax 2-categories and directed homotopy. Cahiers Topologie Géom. Différentielle Catég. 47 (2) (2006), 107128.
[9]Johnson, M. Coherence geometrically: thoughts on last week's talks. Talk in the Australian Category Seminar (6 March, 2013).
[10]Kelly, G. M.On MacLane's conditions for coherence of natural associativities, commutativities, etc. J. Algebra 1 (1964), 397402.
[11]Lack, S. and Street, R.Skew monoidales, skew warpings and quantum categories. Theory Appl. Categ. 26 (2012), 385402.
[12]Lurie, J.Higher Topos Theory. (Princeton University Press, 2009).
[13]Lurie, J. Higher algebra. available at http://www.math.harvard.edu/lurie/.
[14]Mac Lane, S.Natural associativity and commutativity. Rice University Studies 49 (1963), 2846.
[15]Solomon, A.Catalan monoids, monoids of local endomorphisms and their presentations. Semigroup Forum 53 (1996), 351368.
[16]Stanley, R.Enumerative Combinatorics. Cambridge Studies in Advanced Math., vol. 2. 62 (1999).
[17]Stanley, R. Catalan Addendum. http://www-math.mit.edu/rstan/ec/catadd.pdf (retrieved June 2013).
[18]Szlachányi, K.Skew-monoidal categories and bialgebroids. Adv Math. 231 (2012), 16941730.
[19]Tamari, D.The algebra of bracketings and their enumeration. Nieuw Archief voor Wiskunde. Vierde Serie 10 (1962), 131146.
[20]Verity, D.Complicial sets: characterising the simplicial nerves of strict ω-categories. Mem. Amer. Math. Soc. 193 (2008), no. 905.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed