(1)Burchnall, J. L. and Chaundy, T. W.Commutative ordinary differential operators. Proc. London Math. Soc. 21 (1922), 420–440.
(2)Drinfel'd, V. G.On commutative subrings of certain non-commutative rings. Funct. Anal, and its Appl. 11 (1977), 11–14 (Russian), 9–12 (English).
(3)Dubrovin, B. A., Matveev, V. B. and Novikov, S. P.Non-linear equations of Korteweg–de Vries type, finite-zone linear operators and Abelian varieties. Uspekhi Mat. Nauk 31, 1 (1976), 55–136 = Russian Math. Surveys 31, 1 (1976), 59–146.
(4)Fadeev, L. D. and Takhtadzhyan, L. A.Essentially non-linear one-dimensional model of classical field theory. Teor. i Mat. Fiz. 21 (1974), 160–174 = Theor. and Math. Phys. 21 (1974), 1046–1057.
(5)Gardner, C. S.Korteweg–de Vries equation and generalizations. IV. The Korteweg–de Vries equation as a Hamiltonian system. J. Math. Phys. 12 (1971), 1548–1551.
(6)Gardner, C. S., Greene, J. M., Kruskal, M. D. and Miura, R. M.Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19 (1967), 1095–1097.
(7)Gel'fand, I. M. and Dikii, L. A.Fractional powers of operators and Hamiltonian systems. Funct. Anal, and Its Appl. 10 (1976), 13–29 (Russian), 259–273 (English).
(8)Gel'fand, I. M. and Dikii, L. A.The resolvent and Hamiltonian systems. Funct. Anal. and Its Appl. 11 (1977), 11–27 (Russian), 93–105 (English).
(9)Gel'fand, I. M. and Levitan, B. M.On the determination of a differential equation from its spectral function. Izv. Akad. Nauk. SSSR, Ser. Mat. 15 (1951), 309–360 = A.M.S. translations, vol. 1 (1955), 253–304.
(10)Ince, E. L.Ordinary differential equations (Dover, 1956).
(11)Krichever, I. M.Integration of non-linear equations by methods of algebraic geometry. Funct. Anal, and Its Appl. 11 (1977), 15–31 (Russian), 12–26 (English).
(12)Krichever, I. M.Methods of algebraic geometry in the theory of non-linear equations. Uspekhi Mat. Nauk 32, 6 (1977), 183–208 = Russian Math. Surveys 32, 6 (1977), 185–213.
(13)Lax, P. D.Integrals of non-linear equations of evolution and solitary waves. Comm. Pure and Appl. Math. 21 (1968), 467–490.
(14)Lax, P. D.Periodic solutions of the KdV equation. Comm. Pure and Appl. Math. 28 (1975), 141–188.
(15)Manin, Yu. I.Algebraic aspects of non-linear differential equations. Itogi Nauki i Tekhniki, Ser. Sovremennie Problemi Matematiki 11 (1978), 5–152 (Russian).
(16)Miura, R. M., Gardner, C. S. and Kruskal, M. D.Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968), 1204–1209.
(17)Mumford, D.An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation and related non-linear equations. Proceedings of Kyoto conference (01 1978).
(18)Zakharov, V. E. and Fadeev, L. D.The Korteweg–de Vries equation: a completely integrable Hamiltonian system. Funct. Anal, and Its Appl. 5 (1971), 18–27 (Russian), 280–287 (English).
(19)Zakharov, V. E. and Shabat, A. B.A scheme for integrating the non-linear equations of mathematical physics by the inverse scattering method. Funct. Anal, and Its Appl. 8 (1974), 43–53 (Russian), 226–235 (English).