Skip to main content
×
Home
    • Aa
    • Aa

Complete spacelike hypersurfaces in a Robertson–Walker spacetime

  • ALMA L. ALBUJER (a1), FERNANDA E. C. CAMARGO (a2) and HENRIQUE F. DE LIMA (a3)
Abstract
Abstract

In this paper, as a suitable application of the well-known generalized maximum principle of Omori–Yau, we obtain uniqueness results concerning to complete spacelike hypersurfaces with constant mean curvature immersed in a Robertson–Walker (RW) spacetime. As an application of such uniqueness results for the case of vertical graphs in a RW spacetime, we also get non-parametric rigidity results.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2]A. L. Albujer New examples of entire maximal graphs in ℍH2 × ℝ1. Diff. Geom. Appl. 26 (2008), 456462.

[3]A. L. Albujer and L. J. Alías Calabi–Bernstein results for maximal surfaces in Lorentzian product spaces. J. Geom. Phys. 59 (2009), 620631.

[4]A. L. Albujer and L. J. Alías Spacelike hypersurfaces with constant mean curvature in the steady state space. Proc. Amer. Math. Soc. 137 (2009), 711721.

[5]A. L. Albujer , F. E. C. Camargo and H. F. de Lima Complete spacelike hypersurfaces with constant mean curvature in ℍ × ℝn. J. Math. Anal. Appl. 368 (2010), 650657.

[8]L. J. Alías , A. Romero and M. Sánchez Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson–Walker spacetimes. Gen. Relativity Gravitation 27 (1995), 7184.

[9]L. J. Alías , A. Romero and M. Sánchez Spacelike hypersurfaces of constant mean curvature and Calabi–Bernstein type problems. Tôhoku Math. J. 49 (1997), 337345.

[10]M. Caballero , A. Romero and R. M. Rubio Uniqueness of maximal surfaces in generalized Robertson–Walker spacetimes and Calabi–Bernstein type problems. J. Geom. Phys. 60 (2010), 394402.

[11]M. Caballero , A. Romero and R. M. Rubio Complete cmc spacelike surfaces with bounded hyperbolic angle in generalized Robertson–Walker spacetimes. Int. J. Geom. Methods Mod. Phys. 7 (2010), 961978.

[12]M. Caballero , A. Romero and R. M. Rubio Constant mean curvature spacelike surfaces in three-dimensional generalized Robertson–Walker spacetimes. Lett. Math. Phys. 93 (2010), 85105.

[13]E. Calabi Examples of Bernstein problems for some nonlinear equations. Proc. Sympos. Pure Math. 15 (1970), 223230.

[14]S. Y. Cheng and S. T. Yau Maximal spacelike hypersurfaces in the Lorentz–Minkowski space. Ann. of Math. 104 (1976), 407419.

[16]G. Li and I. Salavessa Graphic Bernstein results in curved pseudo-Riemannian manifolds. J. Geom. Phys. 59 (2009), 13061313.

[17]S. Montiel Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes. Math. Ann. 314 (1999), 529553.

[18]H. Omori Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan 19 (1967), 205214.

[20]M. Rainer and H-J. Schmidt Inhomogeneous cosmological models with homogeneous inner hypersurface geometry. Gen. Relativity Gravitation 27 (1995), 12651293.

[21]A. Romero and R. M. Rubio On the mean curvature of spaclike surfaces in certain three-dimensional Robertson–Walker spacetimes and Calabi–Bernstein's type problems. Ann. Glob. Anal. Geom. 37 (2010), 2131.

[22]Y. L. Xin On the Gauss image of a spacelike hypersurface with constant mean curvature in Minkowski space. Comment. Math. Helv. 66 (1991), 590598.

[23]S. T. Yau Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201228.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×