Skip to main content
×
Home

Complete spacelike hypersurfaces in a Robertson–Walker spacetime

  • ALMA L. ALBUJER (a1), FERNANDA E. C. CAMARGO (a2) and HENRIQUE F. DE LIMA (a3)
Abstract
Abstract

In this paper, as a suitable application of the well-known generalized maximum principle of Omori–Yau, we obtain uniqueness results concerning to complete spacelike hypersurfaces with constant mean curvature immersed in a Robertson–Walker (RW) spacetime. As an application of such uniqueness results for the case of vertical graphs in a RW spacetime, we also get non-parametric rigidity results.

Copyright
References
Hide All
[1]Aiyama R.On the Gauss map of complete space-like hypersurfaces of constant mean curvature in Minkowski space. Tsukuba J. Math. 16 (1992), 353361.
[2]Albujer A. L.New examples of entire maximal graphs in ℍH2 × ℝ1. Diff. Geom. Appl. 26 (2008), 456462.
[3]Albujer A. L. and Alías L. J.Calabi–Bernstein results for maximal surfaces in Lorentzian product spaces. J. Geom. Phys. 59 (2009), 620631.
[4]Albujer A. L. and Alías L. J.Spacelike hypersurfaces with constant mean curvature in the steady state space. Proc. Amer. Math. Soc. 137 (2009), 711721.
[5]Albujer A. L., Camargo F. E. C. and de Lima H. F.Complete spacelike hypersurfaces with constant mean curvature in ℍ × ℝn. J. Math. Anal. Appl. 368 (2010), 650657.
[6]Alías L.J., Brasil A. Jr. and Colares A. G.Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications. Proc. Edinb. Math. Soc. 46 (2003), 465488.
[7]Alías L. J. and Colares A. G.Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes. Math. Proc. Cam. Phil. Soc. 143 (2007), 703729.
[8]Alías L. J., Romero A. and Sánchez M.Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson–Walker spacetimes. Gen. Relativity Gravitation 27 (1995), 7184.
[9]Alías L. J., Romero A. and Sánchez M.Spacelike hypersurfaces of constant mean curvature and Calabi–Bernstein type problems. Tôhoku Math. J. 49 (1997), 337345.
[10]Caballero M., Romero A. and Rubio R. M.Uniqueness of maximal surfaces in generalized Robertson–Walker spacetimes and Calabi–Bernstein type problems. J. Geom. Phys. 60 (2010), 394402.
[11]Caballero M., Romero A. and Rubio R. M.Complete cmc spacelike surfaces with bounded hyperbolic angle in generalized Robertson–Walker spacetimes. Int. J. Geom. Methods Mod. Phys. 7 (2010), 961978.
[12]Caballero M., Romero A. and Rubio R. M.Constant mean curvature spacelike surfaces in three-dimensional generalized Robertson–Walker spacetimes. Lett. Math. Phys. 93 (2010), 85105.
[13]Calabi E.Examples of Bernstein problems for some nonlinear equations. Proc. Sympos. Pure Math. 15 (1970), 223230.
[14]Cheng S. Y. and Yau S. T.Maximal spacelike hypersurfaces in the Lorentz–Minkowski space. Ann. of Math. 104 (1976), 407419.
[15]Hawking S. W. and Ellis G. F. R.The Large Scale Structure of Spacetime, (Cambridge University Press, 1973).
[16]Li G. and Salavessa I.Graphic Bernstein results in curved pseudo-Riemannian manifolds. J. Geom. Phys. 59 (2009), 13061313.
[17]Montiel S.Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes. Math. Ann. 314 (1999), 529553.
[18]Omori H.Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan 19 (1967), 205214.
[19]O'Neill B.Semi-Riemannian Geometry with applications to Relativity (Academic Press, 1983).
[20]Rainer M. and Schmidt H-J.Inhomogeneous cosmological models with homogeneous inner hypersurface geometry. Gen. Relativity Gravitation 27 (1995), 12651293.
[21]Romero A. and Rubio R. M.On the mean curvature of spaclike surfaces in certain three-dimensional Robertson–Walker spacetimes and Calabi–Bernstein's type problems. Ann. Glob. Anal. Geom. 37 (2010), 2131.
[22]Xin Y. L.On the Gauss image of a spacelike hypersurface with constant mean curvature in Minkowski space. Comment. Math. Helv. 66 (1991), 590598.
[23]Yau S. T.Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201228.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 69 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.