Skip to main content
    • Aa
    • Aa

Concordance of Bing Doubles and Boundary Genus


Cha and Kim proved that if a knot K is not algebraically slice, then no iterated Bing double of K is concordant to the unlink. We prove that if K has nontrivial signature σ, then the n–iterated Bing double of K is not concordant to any boundary link with boundary surfaces of genus less than 2n−1σ. The same result holds with σ replaced by 2τ, twice the Ozsváth–Szabó knot concordance invariant.

Hide All
[1]Bing R. H. A homeomorphism between the 3-sphere and the sum of two solid horned spheres. Ann. of Math. (2) 56 (1952), 354362.
[2]Cappell S. and Shaneson J. Link cobordism. Comment. Math. Helv. 55 (1980), 2049.
[3]Casson A. J. and Gordon C. McA. Cobordism of classical knots, with an appendix by P. M. Gilmer, in Progr. Math. 62, ‘Á la recherche de la topologie perdue,’ 181199 (Birkhäuser Boston, Boston, MA, 1986).
[4]Cha J. C. Link concordance, homology cobordism and Hirzebruch-type defects from iterated p–covers. J. Eur. Math. Soc. (JEMS) 12 (2010), 555610.
[5]Cha J. C. and Kim T. Covering link calculus and iterated Bing doubles. Geom. Topol. 12 (2008), 21732201.
[6]Cha J. C., Livingston C. and Ruberman D. Algebraic and Heegaard–Floer invariants of knots with slice Bing doubles. Math. Proc. of the Camb. Phil. Soc. 144 (2008), 403410.
[7]Cimasoni D. Slicing Bing doubles. Algebr. Geom. Topol. 6 (2006), 23952415.
[8]Cochran T., Harvey S. and Leidy C. Link concordance and generalized doubling operators. Algebr. Geom. Topology 8 (2008), 15931646.
[9]Cochran T. and Orr K. Not all links are concordant to boundary links. Ann. of Math. (2) 138 (1993), 519554.
[10]Conner P. and Floyd E. Differentiable periodic maps. Ergeb. Math. Grenzgeb., N. F., Band 33 (Academic Press Inc., Springer-Verlag, 1964).
[11]Freedman M. The disk theorem for four-dimensional manifolds. Proc. I.C.M. (Warsaw), (1983), 647–663.
[12]Freedman M. and Quinn F. Topology of 4–manifolds, (Princeton University Press, 1990).
[13]Gilmer P. and Livingston C. The Casson-Gordon invariant and link concordance. Topology 31 (1992), 475492.
[14]Harvey S. Homology cobordism invariants and the Cochran–Orr–Teichner filtration of the link concordance group. Geom. Topol. 12 (2008), 387430.
[15]Levine A. Slicing mixed Bing-Whitehead doubles.
[16]Levine J. Invariants of knot cobordism. Invent. Math. 8 (1969), 98110.
[17]Levine J. Link invariants via the eta invariant. Comment. Math. Helv. 69 (1994), 82119.
[18]Litherland R. Cobordism of satellite knots, Four-manifold theory (Durham, N.H., 1982), 327362; Contemp. Math. 35 (Amer. Math. Soc., 1984).
[19]Livingston C. Links not concordant to boundary links. Proc. Amer. Math. Soc. 110 (1990), 11291131.
[20]Livingston C. Computations of the Ozsváth–Szabó knot concordance invariant. Geom. Topol. 8 (2004), 735742.
[21]Murakami H. and Yasuhara A. Four-genus and four-dimensional clasp number of a knot, Proc. Amer. Math. Soc. 128 (2000), 36933699.
[22]Murasugi K. On a certain numerical invariant of link types. Trans. Amer. Math. Soc. 117 (1965), 387422.
[23]Ozsváth P. and Szabó Z. Knot Floer homology and the four-ball genus. Geom. Topol. 7 (2003), 615639.
[24]Plamenevskaya O. Bounds for Thurston-Bennequin number from Floer homology. Algebr. Geom. Topol. 4 (2004), 399406.
[25]Rasmussen J. Khovanov homology and the slice genus. Invent. math. 182 (2010), 419447.
[26]Rolfsen D., Knots and Links, Mathematics Lecture Series, 7 (Publish or Perish, 1990).
[27]Teichner P., unpublished.
[28]Tristram A. G. Some cobordism invariants for links. Proc. Camb. Phil. Soc. 66 (1969), 251264.
[29]Van Cott C. An obstruction to slicing iterated Bing doubles.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 37 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.