Skip to main content

Explicit concave fillings of contact three-manifolds

  • DAVID T. GAY (a1)

Suppose that (X,ω) is a symplectic manifold and that there exists a Liouville vector field V defined in a neighbourhood of and transverse to M = ∂X. Then V induces a contact form α = ιVω[mid ]M on M which determines the germ of ω along M. One should think of the contact manifold (M,ξ = ker α) as controlling the behaviour of ω ‘at infinity’. If V points out of X along M then we call (X,ω) a convex filling of (M,ξ), and if V points into X along M then we call (X,ω) a concave filling of (M,ξ).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed