Skip to main content

A natural invariant algebra for the Harada-Norton group

  • A. J. E. Ryba (a1)

The Harada-Norton group is one of the twenty-six sporadic simple groups. It has order 273, 030, 912, 000, 000 = In this paper our main objective is:

Theorem 1. The Harada-Norton group acts as a group of linear automorphisms of a 133-dimensional commutative, non-associative algebra defined over F5.

Hide All
[1] Aschbacher, M.. On the maximal subgroups of the finite classical groups. Invent. Math. 76 (1984), 469514.
[2] Conway, J. H.. A simple construction for the Fischer–Griess monster group. Invent. Math. 79 (1985), 513540.
[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.. An ATLAS of Finite Groups (Oxford University Press, 1985).
[4] Conway, J. H. and Norton, S. P.. Monstrous moonshine. Bull. London Math. Soc. 11 (1979), 308339.
[5] Harada, K.. On the simple group F of order Proc. Conf. Finite Groups, Utah, 1975, ed. Scott, W. R. and Gross, F. (Academic Press, 1976), pp. 119276.
[6] Jansen, C., Lux, K., Parker, R. A. and Wilson, R. A.. An ATLAS of Modular Characters, in preparation.
[7] Kleidman, Peter B. and Martin, Liebeck. The subgroup structure of the finite classical groups (Cambridge University Press, 1990).
[8] Kleidman, Peter B. and Wilson, R. A.. Sporadic subgroups of finite exceptional groups of Lie type. J. Alg. 157 (1993), 316330.
[9] Norton, S. P.. F and other simple groups (Ph.D. thesis, Cambridge, 1975).
[10] Norton, S. P.. On the group Fi 24. Geom. Dedicata 25 (1988), 483501.
[11] Norton, S. P. and Wilson, R. A.. Maximal subgroups of the Harada–Norton group. J. Algebra 103 (1986), 362376.
[12] Ryba, A. J. E.. Fibonacci representations of the symmetric groups. J. Alg. 170 (1994), 678686.
[13] Ryba, A. J. E.. Modular moonshine? Preprint (1994).
[14] Ryba, A. J. E. and Wilson, R. A.. Matrix generators for the Harada–Norton group. Experimental Math. 3 (1994), 137145.
[15] Suleiman, I. A. and Wilson, R. A.. The 3- and 5-modular characters of the covering and automorphism groups of the Higman–Sims group. J. Alg. 148 (1992), 225242.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed